
Parallel Algorithm for Solving Time Convolution

Equations and Application to CEM

Alain Bachelot∗ Pierre Charrier ∗ Agnès Pujols†

Danièle Rouart ∗

Abstract

Boundary Integral Equation Methods, when used to study tran-
sient problems, require to solve a marching-in-time scheme which is
the discrete equivalent of the convolution character of the continuous
integral operator. Here we are interested in new issues for solving such
schemes on parallel computers. We present and analyse a parallel algo-
rithm and consider applications to Computational Electromagnetics.
Results of numerical simulations on the CRAY T3D are provided.

1 Dense Systems of Discrete Time Convolution
Equations

In this paper, we consider the solution of the following problem in Rn
~X l = 0 for l ≤ 0
M0 ~X1 = ~B1

M0 ~X l = −
∑pmax

p=1 Np ~X l−p + ~Bl for 2 ≤ l ≤ lmax

where M0 is a nonsingular n× n matrix and Np, p = 1, pmax are given non
zero n × n matrices. In a first step we assume that all these matrices are
dense. ~Bl is a given sequence of vectors in Rn. Moreover we will consider
situations where lmax > pmax. The problem is to compute the solution
vectors ~X l for 1 ≤ l ≤ lmax. This is a quasi-explicit marching in time
scheme since, once the ~Xk, k = 1, lmax are available, X l can be computed
by solving a linear system. For this, we have to perform at each time step
the following operations

∗Applied Mathematics, University Bordeaux l, Talence France
†SIS, CEA-CESTA, Le Barp France.

1

21 DENSE SYSTEMS OF DISCRETE TIME CONVOLUTION EQUATIONS

• compute the convolution product ~C l = −
∑pmax

p=1 Np ~X l−p + ~Bl,

• solve in ~X l the linear system M0 ~X l = ~C l and store the result ~X l.

We therefore obtain the algorithm given at Figure ??.

do l=1,lmax
C= B(l)
do p = 1, min(l-1,pmax)

C=C- N(p) X(l-p)
end do
solve, for X(l), MX(l)=C

end do

Figure 1: Sequential Algorithm 1

A specific feature in this problem is that solving the linear system is
not the main step in term of computational and storage complexity. The
first step (convolution product) costs O(3pmaxn

2) flops and O(pmaxn
2) data

to be stored. Solving the linear system (for instance by using a Conjugate
Gradient type iterative method) costs (O(Kn2)) floating operations and
O(n2) data to be stored. As an example we give the time for solving such a
problem on one processor of IBM SP 2 in Figure ??.

Table 1: Timing on one processor IBM SP 2 (in second)

n pmax lmax total linear convolution
time system product

1296 19 90 4170 135 4035

The numerical test confirms that the convolution products take the most
important part of the excution time. So, when designing a parallel imple-
mentation for such a problem, we must take a special care of this step.

3

2 Parallel Algorithm

2.1 general remarks

In order to design a parallel algorithm to solve a dense sytem of discrete
time convolution equations, we analyse dependences in algorithm 1. At a
first level, we note that the various matrix-vector multiplications NpX l, for
p = 1, pmax and a fixed l, are independent. Since a product N iXj gives
a contribution to the right hand side Ci+j , the various terms NpX l, for l
given, are associated with different time steps. So this first level of par-
allelism can be seen as a time parallelism. We can put it in evidence by
rewritting algorithm 1 to get algorithm 2 described in Figure ??.

do p = 1, pmax
Y(p)=0

fin pour
C=B(1)
solve, for X, MX=C
do l=2,lmax

C= B(l)
do p = 1,min(lmax -l, pmax)

Y(p)=Y(p+1)- N(p) X
end do
C= C-Y(1)
solve, for X, MX = C

end do

Figure 2: Algorithm 2

In algorithm 2 X is the solution vector at time step l (i.e. X l), and the
vector Y p is an intermediate result containing at the beginning of of the
iteration l the partial sum

Y p = −
l−2+p∑
q=p

N qX l−1+p−q.

Algorithm 2 is equivalent to Algorithm 1 and has the same computing
and storage cost, but is well suited for parallel implementation since the
various iterations of the inner p loop are independent. At the end of each
iteration of the outer loop we have to solve a linear system. Finally let us

4 2 PARALLEL ALGORITHM

remark that a second level of parallelism inside the matrix-vector multipli-
cations can be exploited.

2.2 Message Passing Parallel Implementation

We consider now a parallel implementation of algorithm 2 with a message
passing SPMD programming model.

Each matrix Np is distributed across the processors using the same row
partitioning. So each processor stores a part of matrix Np named Np

loc. For
load balancing, each processor has the same number of rows. Vectors Bl and
Y p are distributed according to the same scheme and local vector is named
Y p

loc.
The data structure for storing matrix M0 depends on the method used

to solve the linear system. For an iterative solver such as a Conjugate
Gradient method, the main computational part of the algorithm is a matrix-
vector multiplication, and therefore the matrix M0 is distributed across the
memory of processors by using the same scheme as for matrices Np.

Vector X is computed in parallel as the solution of a linear system
M0X = B, at the end of each iteration of the outer loop. Hence, its compo-
nents are distributed. However, for performing efficient parallel row-oriented
matrix-vector multiplications, it is convenient to have the complete vector X
on each processor. Indeed, in this case, a parallel matrix-vector multiplica-
tion can be performed without communication. So, after solving the linear
system, the vector X is reconstructed on every processor. This operation is
equivalent to a gather followed by a broadcast, and is named in the following
a step of reconstruction of the vector X. This means that there are two data
structures to store X.

For solving the linear system we use a preconditioned Conjugate Gradi-
ent method (PCG). The preconditioning is performed by a LDLT factoriza-
tion of each local block associated with the row-partitioning and therefore
is completely local.

Figure 3 gives the pseudo-code of the message passing parallel imple-
mentation of this algorithm.

Table ?? and Table ?? give timings for solving systems of discrete time
convolution equation on a Cray T3D using the algorithm described above.
It appears that the parallel efficiency obtained for the computation of the
convolution term is quite good. At the opposite the parallel PCG solver
exhibit a poor scalability. Two reasons can explain this behaviour

2.2 Message Passing Parallel Implementation 5

do p = 1,pmax
Yloc(p)=0

end do
C=B(1)
solve in parallel, for X(1), MX(1)=C
reconstruction of X
do l=2,lmax

Cloc= Bloc(l)
do p = 1,min (lmax-l,pmax)

Yloc(p)=Yloc(p+1)- Nloc(p) X
end do
Cloc= Cloc-Yloc(1)
solve in parallel, for X, MX=C
reconstruction of X

end do

Figure 3: Pseudo-code of the message-passing parallel implementation

• Consider a system of n equations and p processors. Each iteration of
PCG involves (per processor) n2/p flops (matrix-vector multiplication)
and (p − 1)n/p data sent (reconstruction). Hence the ratio computa-
tion/communication becomes worse when n/p becomes small, i.e. for
small granularity.

• The block-diagonal preconditioning tends to be less efficient when the
number of processor increases.

The convolution product which is the dominant component in sequential
computations is implemented with a quasi perfect scalability. As a conse-
quence, solving the linear systems can become the dominant part for parallel
simulations with a high number of processors. Nevertheless the overall par-
allel performance achieved is quite satisfactory.

6 3 APPLICATION TO CEM

Table 2: Timings for n= 411 on a Cray T3D (in second)

total linear convolution
proc time systems products

4 85 65 17
8 49 38 8
16 34 27 4
32 31.5 26 2

Table 3: Timings for n=1296 on a Cray T3D (in second)

total linear convolution
proc time system products
16 248 155 85
32 138 90 43
64 85 60 22

3 Application to CEM

Many problems in science and ingineering involve determining the scattering
of a transient wave by an obstacle. For solving such problems the Boundary
Integral Equation Method has the advantage over domain-based formula-
tions that only the compact boundary of the obstacle has to be meshed
for finite element computations. Moreover they do not need any special
treatment to take into account the radiation condition at infinity. After ap-
proximation by finite element these models lead to systems of discrete time
convolution equations.

We recall some background on this method in the case of an electromag-
netic wave scattered by a conducting obstacle. We denote Γ the boundary of
the tridimensional obstacle, ~E the electromagnetic field, ~c(t, x) the incident
wave and we introduce an auxiliary unknown ~ϕ defined on Γ by

~ϕ = [~rot ~E ∧ ~n]

Then we can prove ([?], [?], [?]) that ~ϕ is solution of the following variational

7

problem :

Find ~ϕ such that ∀~ψ ,

∫ +∞

0

∫
Γ×Γ

{
~ϕ(t− | x− y |c, y)∂t

~ψ(t, x)
4π | x− y |

+ c2
divΓ∂t

~ψ(t, x)
4π | x− y |

∫ t−|x−y|c

0

∫ s

0
divΓ~ϕ(r, y)drds

}
dydxdt

=
∫ +∞

0

∫
Γ
~c(t, x)∂t

~ψ(t, x)dxdt

The finite element approximation is obtained by taking

~ϕh(t, y) =
n∑

j=1

αj(t)~ϕj(y) and ~ψh(t, x) = βi(t)~ϕi(x)

where ~ϕj are the basis functions of the finite element method of Raviart
and Thomas ([?]). For the time approximation, we use the P t

0 × P t
0 scheme

introduced in [?]and defined by

αj(t) =
∑
m≥1

χm(t)Xm
j and βi(t) = χl(t), l ≤ 1

where

χm(t) =

{
1 if t ∈ [tm−1, tm[
0 else

Then the vectors X l satisfy a system of discrete time convolution equa-
tions with pmax matrices Np where

pmax =
[
diam

c∆t

]
+ 2

where diam is the diameter of the obstacle (so for 3D problems pmax =
O(n1/2)).

A finite element code for transient BIEM is structured in two steps. The
first step constructs the matrices M0 and Np and vectors Bl. The second
step solves the system of discrete time convolution equations. Table 4 gives
a timing for these two steps on a problem associated with a mesh with 1296
degrees of freedom.

84 PARALLEL IMPLEMENTATION OF BIEM FOR TRANSIENT PROBLEMS

Table 4: Timings for n= 1296 on one processor Cray J 90

Total Construction Solution
time step time
4836 2449 2376

4 Parallel Implementation of BIEM for Transient
Problems

A parallel code for transient BIEM is also structured in two steps performed
one after the other.

The first step constructs matrices M0 and Np, p = 1, pmax, and vectors
Bl, l = 1, lmax. Since the finite element basis functions have a compact sup-
port, each of these matrices is sparse but has a specific sparsity pattern. By
taking into account this sparsity the amount of storage and the computing
time can be stongly reduced. The sparsity pattern of the matrices is deter-
mined in a preliminary phase of the parallel code (symbolic construction)
and the matrices are stored using the CSR SPARSKIT format. They are
distributed across the processors, as indicated in paragraph 2.2. Therefore
we do not take into account their symmetric structure. The computations
of the various element matrices are independent and are distributed among
the processors but the assembly involves some communication.

The second step solves the system of discrete time convolution equations
constructed in the first step, using the algorithm described in Figure 3 and
the above data structure. The parallel PCG solver is adapted to the sparse
structure of the matrix M0.

Table ?? gives the timings for a numerical test over a sphere with 1080
d.o.f. and lmax = 90. Table ?? gives the timing for a numerical test over a
pyramid with 1296 d.o.f. and lmax = 90.

9

Table 5: Timings for n=1080 on a Cray T3D

total symbolic numerical solution convolution linear
proc time construction construction time products systems
16 211 5.7 167 37.7 20 9.5
32 123 2.8 87 29.1 9.6 8.6
64 65 39 46.6 15.8 4.99 7.5

Table 6: Timings for n=1296 on a Cray T3D

total symbolic numerical solution convolution linear
proc time construction construction time products systems
16 337 8.7 253 73 30 32
32 188 4.2 135 46 15 25
64 125 2.6 78 42 8.2 24

5 Conclusion

This work shows that high performance can be achieved in computational
electromagnetics based on transient Boundary Integral Equation Method
on MPP computers. This is crucial for application to high frequency prob-
lems which induce large size systems very expensive in memory space and
computing time.

References

[1] A. Bachelot and A. Pujols, Boundary Integral Equation Method in Time
Domain for Maxwell’s System, in Computing Methods in Applied Sci-
ences and Engineering, Nova Science Publishers, New York, 1991.

[2] A. Bachelot and V. Lange, Time Dependent Integral Method for
Maxwell’s System, in Mathematical and Numerical Aspects of Wave
Propagation SIAM, 1995.

10 REFERENCES

[3] M. Filipe, A. Forestier and T. Ha-Duong, A time Dependent Acoustic
Scattering Problem, in Mathematical and Numerical Aspects of Wave
Propagation SIAM, 1995.

[4] P. A. Raviart and J. M. Thomas, A mixed finite element method for
2nd order elliptic problems, Lecture Notes in Math., 606, Verlag, Berlin,
1975.

