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GLOBAL EXISTENCE OF
LARGE AMPLITUDE SOLUTIONS FOR
NONLINEAR MASSLESS DIRAC EQUATION

ALAIN BACHELOT

Abstract: In this paper we solve the global Cauchy problem for non-
linear relativistic Dirac equation in Minkowski space.

We can take arbitrarily large initial data with the only smallness as-
sumption on the Chiral invariant related to Lochak-Majorana condition. We
study the asymptotic behaviour of the solution, particularly the equiparti-
tion of energy and the remarkable decay of Lorentz-invariant products.

Introduction

We consider the nonlinear massless Dirac equation in Minkowski
space R} with the Lorentz metric g, , = diag(1, —1,-1, —1):

"o = f(y¥), (1)

where
Oy = — 0<u<s, =t z = (2!, 2% %) |

and y* are the Dirac matrices defined with the Pauli matrices: o*:

“=(o 1) = o) = 9= %)

P= (G ) (0 ) 1sise

Recetved: September 9, 1988,



456 ALAIN BACHELOT

The Dirac matrices satisfy the relations

YA+t =2g""1d (2)
=gtk (3)
ty0 = A0 ta2 2 byl = ol b3 = a3 (4)

where *A and A note respectively the transposate and the conjugate-
-transposate of matrix A. We introduce the matrice 75
5 0 0'0 )
b

01,23
R Nt S BN B (000

(5)

which satisfies

t.5

¥ =5 =1

, Pt =1d, APyt = 4", 0<u<3. (6)

The quadratic Lorentz-invariant quantities (by respect to the
spinorial representation of the Lorentz group) are:

¢ and P77y, (7)
where 1 is the Dirac-conjugate of a spinor ¢:
p=97". (8)

We are concerned by the cubic Lorentz-invariant nonlinearities f(4).
Let M be the vector space of 4 x 4 matrices:

M={ald+ip, (e, B) € R?} . (9)

We assume that f(1)) satisfies:

f() = F(dv,ip7* ) ¥, (10)
FeC™REM), (11)
|F(u,v)| = 0(|u| + |v]), |u[+]v]—0. (12)

Many physical models verify conditions (10), (11), (12): Heisen-
berg equation, F(u,v) = u - Id, pseudoscalar interaction, F(u,v) =
iv-~% wave equation for a magnetic monopole of G. Lochak [14],
F(u,v) =uld+ivy°
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‘The global Cauchy problem associated to (1) for small initial data
was solved by J.P. Dias and M. Figueira [6], [7]. In this paper we
prove the existence of global solutions with arbitrarily large energy.
Nevertheless we do an assumption of smallness but only on the Chiral
invariant of the initial data p? = |4 ¢|% + [ ¥° 9|2, This hypothe-
sis means roughly that the Lochak-Majorana condition [15] is “near
satisfied” i.e., ¥ —~ zy2 ¢ is small for some z € C, |z| = 1, and 7
is the complex conjugate of ¢. That implies the relativistic quanti-
ties v ¢ and 1) 75 ¢ are small and, in fact, we solve the global Cauchy
problem for large data for which the nonlinearity f(1) is nevertheless
small. The very particular case p = 0 was studied by J. Chadam and
R. Glassey for the Dirac-Klein-Gordon system [4]; then, the system
is decoupled and the Klein-Gordon equation is free. In [3] we have
solved the global Cauchy problem for Yukawa mass models with small
p. The fundamental point in the delicate study of these nonlinear
hyperbolic systems is the algebraic properties of the nonlinearities
which allow to obtain global small solutions [2]; to get large solu-
tions we add algebraic condition on the polarization of initial data;
Lochak-Majorana condition or smallness of the Chiral invariant that
we study in part 1. In part II we solve the global Cauchy problem
for such a data. We study the asymptotic behaviour of the solution
in part III: the solution is asymptotically free and a very remark-
able consequence of the Lorentz invariance is the decay of relativistic
quantities ¢ ¢ and ¥ 4% ¢ which is better than for ordinary products:
particularly ¢ ¢ and ¢ % ¢ are uniformly 0(t~3) instead of 0(t~%) as
usual and their integral on R2 is 0(t™!): it is the equipartition of
energy [1]. These facts are well-known in the linear cases and are
characteristic of the algebraic condition of compatibility between a
sesquilinear form and a differential system [1], [8], [9], [10].

I — Chiral invariant and Lochak-Majorana Condition
To estimate a Lorentz-invariant non linearity F(yv,1¢~° ), we
introduce, following G. Lochak [15], the Chiral invariant of ¢, p(3):
p= oy + [P0yl (13)

We are concerned by the spinors ¢ for which the Chiral invariant
is null. In the case of a free solution of the linear Dirac equation
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a necessary and sufficient condition to p = 0 is Lochak-Majorana

condition:
dzeC, |z|l=1, ¢=z42¢",

(14)

where 1% is the complex conjugate of 1. We prove the same result

for the Dirac system with a time dependent potential A
—17" 0= Ay,
where A satisfies

A,0,A € Lig.(Re, L®(RE; M) .

Proposition 1.1. Let ¢ be a solution of (15) and
¥ € CORy, (LA(RE))Y),  l=o = vo € (LE(RE))*.
Then the following assertions are equivalent:
(i) 3z€C, |z| =1, o= z42¢7;

(ii) Yz € R®, p(¢o(z)) = 0;
(iii) V(¢t,z) € R1*3, p(¢(t,x))=0.

Proof: We use the bispinorial representation by putting

'J):I ('10+'15)(f’), E,neC?.

Si-

We verify easily that
by =€ ntat-¢, PPY=¢rn—nt-c.
Therefore p = 0 if and only if |
§+ n=0.
This condition is equivalent to
32€C, |z|=1, €¢=zalnpt.
By using (17) we see that this means

=zytyt

(17)
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and we conclude that

b= 2rtpt > p()=0. (18)

Now it is obvious that it is sufficient to prove (ii)<(iii) for 1y €
H1(R3))* with compact support. Equation (15) can be written
z p

3
o+ > V9 =i1"Av. (19)

i=1

By multiplying (19) by ¥ we find

3
Bl + Y 81"+ ) = 0. (20)

i=1

We integrate (20) over R2 and we obtain the charge conservation:

/Rs l(t, z)|*dz = Cst . (21)

Now we multiply (19) by *4 ~% and it follows:
3 .
o(* ) + Z 2%y y)=0.

We integrate over R2 again and we obtain the conservation law:

/Rs b (t,2) v P (t, z) dz = Cst, . (22)
Let 2 be a complex number of modulus one. We have
¥ — 2797 |* = 2[$]* + 2Re(z'¥7"¢) .
Then we have thanks to (21) and (22):
/Ra %(t,) - 292 %" (t,7) 2 dz = Cst . (23)

By (18) and (23) we conclude that p(1p) = O is equivalent to
p(¥)=0.u
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II - Large global solutions

We consider the Cauchy problem:

{~i7“3u¢= F(Yv,i 91 9) ¢,

(24)
1|[)|t‘—-0 = \IIO + EXO )

where F satisfies (11) and (12) and the initial data t|;=o is in a
neighbourhood of the cone defined by the Lochak-Majorana condition

(14). For simplicity we choose test functions W, Xg, and Wo verifies
(14):

Wo,x, € PR3, CY, o0<e, (25)
32€C, |zl=1, Yo=29207 . (26)
Note that ¥ can be as large as we want.

Theorem II.1. There exists &5 > 0 depending only on the
derivatives of ¥ and X, of order <6, such that for 0 < € < €q, the
Cauchy problem (24) has a unique solution ¢y € C®°(R*).

Remark 1. For simplicity and to use easily the powerful L2 — L®
estimates method, we consider only initial data that are test func-
tions; an interesting open problem would be to relax this assumption
and to solve the Cauchy problem (24) (26) under the only hypothesis
of regularity used by J.P. Dias and M. Figueira [6, 7] for small data.

Remark 2. We could use the conformal method and the Pen-
rose transform following Y. Choquet-Bruhat and D. Christodoulou
[5]; but in fields theory it is very important to use invariance proper-
ties as weak as possible (e.g. in the case of mass and massless fields
interacting [2|); here we need only the Lorentz invariance; particularly
we don’t use the scaling invariance to prove the global existence.

Remark 3. By using the scaling invariance we can relax the
assumptions of regularity of initial data; in fact, ey depends only of
derivatives of W, x, of order < 4.

Proof: We note (I's)1<s<10 the generators of the Poincaré group:

(FO)ISGSIO = (3u,3u 9y — Ty 344)05;:, v<3 . (27)
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We define the Sobolev norms associated with the Lorentz metric: for
any test function u € D(R; x R2) and for any integer N we put

lu@lIF = > It u@®)lsms) » (28)
IA|<N

lu(t)ln = sup |T*u(t)|Lors) (29)
IAI<N

where
AENIO, l/\l:/\1++A10’ I‘V\:Fi\ln_ri\én )

To estimate a spinorial field we replace in (27), (28), (29) the
operators (I';)1<s<10 by the Fermi operators

A

1
(Fa)1§a§10 = (awxu 0, — z, au + ’2“'7;1 ’YV)OSIMVSI" .

The crucial property of these operators is the exact commutation
with the Dirac system:

[To,—iv"8,] =0. (30)
Obviously the norms defined by (f‘a)lﬁaglo and (28) and (29) are
equivalent.
Now let ¥ be the solution of
—1y*9,¥ =0,
o (31)
‘I’|t:0 - ‘I’O .
Lochak-Majorana condition (26) and proposition 1.1 imply
VO =¥ ¥ =0. (32)
We write
Y=+ y (33)
and the Cauchy problem (24) becomes
—17"0ux = filx; ¥) ,
{ u 1( ) (34)
XI‘=0 = EXO ]
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where thanks to (32), (11), (12), f; satisfies

106 ) =0(x (x| + 1¥)*),  Ix|—0. (35)

We define the sequence x”, v € N, by putting:
=0, (36)

{—i*r“ayx” = (L9, v>1,

37
x“|t=0 =€x0, v2>1. (37)

The charge conservation and (35) imply

@l < (+ | L Gl (e 6+ 1eGe)in)” as])

(38)
where [N /2] is the integer part of N/2. We recall the L?— L™ estimate
of [11]

|u(®)lk < C (1+[t)) 7" sup ||u(s)lk+s - (39)
seR

¥ being a free solution we have
(1 +{¢]) [®(t) v < CS“}I;II‘I’(S)IINH < +oo . (40)
sE

We 1troduce

an(t) = sup |[Ix"(s)llv, An=supan(t). (41)
s|<e| teR
0<v<n

We deduce from (38), (39), (40) that for N > 6

an(t) <C <6 + ‘/O't an-1(s) (1+ An—1)? (1 + [s]) 72 ds|> . (42)

Suppose An_; < +oo; then (42) implies a, € L. _(R:) and the
sequence a,, being increasing we have

t
an(t) < C <s + \/ an(s) (14 An_1)? (1 + |s|)‘2ds'> .

0

Gronwall lemma gives

Apn < Ceexp{C An-1 (1+ An-1)}, (43)
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where C > 0 does not depend on n. Let ¢g > O be such that
2Cep < 1 ,
4C%ep < log?2;

If A,,_; verifies
A, 1 <2C¢g, (44)

(43) implies
A, < Cepexp{C(2Ce)2} <2C¢q . (45)
As (44) is trivial for Ag we obtain

sup || x”(t)|ln = sup A, < 2Cep < +0o . (46)
tv n

Now the Sobolev inequality (39), and (40) and (46) assure
sup{|x”(t,2)],|¥(t,2)|; t,z,v} = r < +oo . (47)

We have at each (t,z)

|£10¢ 72 (8 2); (2, 2)) — f10¢ 2 (8, 2); (8, 2)) <
<) - x| sup [£i(E)]

£neCt
[€LInl<r

The Dirac propagator being unitary on (L%(R2))* we calculate
that

t
I (®) =% Ollamey < € [ I (9) = X6 laamy ds

This inequality implies

. e ct)y”
lIx”(t) = x* ()l Lare) < € lxolleary (—,/')' ’

therefore the sequence x” is converging to some y in C°(R, (L?(R3))*)
and thanks to (47), fi(x";¥) is converging to fi(x;¥) in
C°(Ry, (L*(R2))*); finally, x is solution of (34) and by (33) and (46),
1 is solution of (24) with

sup [|4(t)[[n < +oo, (48)
teR
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for some N, choosen > 6, and particularly we have

sup |¢(¢, z)| < +oo .
t,x

Then thanks to Gagliardo-Nirenberg inequality, for any integer k, we
have

IE @, 97" ) w(B)llar(rs) < Coll¥@llmems) - (49)

The local Cauchy problem for (24) is well posed C°(0,T};(H*(R2))*)
for some 0 < T} and the Dirac propagator is unitary on Sobolev space;
then we obtain with (49):

t
0<t<Te,  [WOlurmy) < Ci+ [ Cullb(o) s ds

We conclude by Gronwall lemma that T, = +oo and ¢(t) €
C*°(R2); by using the equation we have also ) € C®(R4). u

Now we justify remark 3. We add the radiation operator T’y =
z# d, to family (27):

(Fa)OSGSIO = (6“, x‘, 6,, — Ty 6“, :ca 8(1)05“, v<3 - (27 blS)

We introduce the norms || ||, | | instead of || ||n, | |n:

lu@ily = D IIT* w(®)iars) » (28 bis)
IAI<N
lw(®)y = > I w(t)|eo(ry) » (29 bis)
[Al<N

where

Y=Ty0- T4, AeNYM ry=g+9,
We add so fo = Ty to family IN‘,, and the scaling invariance means:
[To, —iy* A =1iv" 9, . (30 bis)

Following [13] we replace Sobolev inequality (39) by

@i < C(U+ 1) flu(®)lliys - (39 bis)
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Thanks to (30bis) we can prove as above

sup ||x(t)lly <2Ceq, (46 bis)
teR

sup [[H(0) [} < +oo (48 bis
teR

for some N choosen > 4 and ¢y > 0 small enough.

III - Asymptotic behaviour — Equipartition of energy

The rate of the uniform decay of 1 and the order of the nonlin-
earity are large enough to assure the time integrability of the energy
of the second member of (1) and the solution is asymptotically free:

Theorem III.1. Let ¢ be the solution of (24) given by theorem
IL1. Then there exists ¥t satisfying

eﬂc" (HSHRY)Y,  —int 0,9t =0

Jim[jok(t) - Oy E(@)llgo-kry =0, VkEN.

So we are interested by comparing the ponctual decay of ¥ with
the ponctual decay of free solutions. We know by (39) and (48) that

| (t)|Leo(rz) = 0(1t]7") (50)
like free solution, but inside the light cone, the decay 1s better:

Theorem III.2. Let 0 < C < 1 be; then vy satisfies for eg > 0
small enough:

(&)l zeo(glal<cany) = O(1t] ™) - (51)

Now we want point out the remarkable properties of asymptotic
behaviour of relativistic quantities ¢4 and ¢ v° .
Let 90 be a regular wave packet free solution of:

—iy*9,¢°=0.
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Obviously we have
19°(8) | La(rs) = Cst
[9°(t) Lo (re) = O(J2| ™) -

Therefore, for any sesquilinear form @ on C* we have
sup'/ o, z) ), ¥°(t, 2) d:z:‘ < +o0 ,
teR

1Q((t), ¥°(t)) | Lors) = 0(J¢] %) -

But we know that
‘/ tx¢°txdx}+'/ t/)t:c)'yd)ot:rd:cl—
=0(lt|™"), |t} oo, (52)
and

[9°(8) $°(0)| oo (rs) + 197 (1) 15 ¥0(2) | ooqma) = Ot ) . (53)

In fact these properties of equipartition of energy are characteris-
tic of the Lorentz invariance of sesquilinear forms, which is equivalent
to the “compatibility” of sesquilinear forms with the Dirac system [1],
(2], [9]. Here we prove that the solution of the relativistic nonlinear
Dirac equation satisfies also (53) and a stronger form of (52):

Theorem III.3. The solution v of (24) given by theorem II.1
verifies as |t| — oo:

[9(t) Y (&) Li(ra) + [9(8) ¥* ¥ (&) Laqmay = O(Jt]7Y) (54)
[9(8) Y ()| Lo(ma) + [(1) ¥° ()l Lo(ms) = O(t] %) . (55)

Note that (54) is much stronger form of equipartition of energy
than the usual result for general hyperbolic systems [1] of type (52),
i.e., the modulus outside the integral. An analogous result is known,
[12}, for the partition of energy of free solution of wave equation,
Ou =0, ultzg,atuh:o S D(Ri)

18uu(t) 8*u(t)llLs(rs) = (It ") -
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There are two arguments:

i) a factorization

Byu 3 u(t) = t7 { (2 3,u) dou — (a# Jou — 2° 3*u) duul;

ii) the fact that the L%-norms of factors z# duu, dou, z* dou —
z° 0#u, d,u are bounded because these terms are free solutions of
wave equation with test functions initial data. An analogous factor-
ization of ¢ and ¥ ~% ¢ is given by proposition I1.2 following with a
certain factor ¢ estimated in proposition III.1: We associate to spinor
¢ a new spinor ¢ defined by

¢=zu 7. (56)

Proposition III.1. Let ¢ be the solution given by theorem II.1
for g > 0 small enough. Then ¢ satisfies

sup [|¢(t)[|q < +o0 , (57)
teR

where the norm || ||; is defined by (28bis).

The next proposition is a special case of the theorem of charac-
terization of compatibility of B. Hanouzet and J.L. Joly [8] by fac-
torization of relativistic quantities by the symbol of Dirac operator.

Proposition II1.2. Let P be the 4 x 4 complex matrix homo-
geneous of 1-order defined by:

P = {8+ |zf?) Lx, v 4° . - (58)

Then we have for any spinors t;
b2 = 1 Pa+ 91 Py, (59)
D17 Y=g Pt i Py, (60)

where ¢; Is given by (56) with ;.

Proof of theorem III.1: Let D(t) the Dirac propagator:

3
D(t) = expitA, A:Zm%iaj.
1=1
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To obtain y¥ is is sufficient to prove the convergence of D(—t) (t)

in (H%(R2))* as t — +00. Now we have

D(-0)9(0) = $(0) + [ D(~9) /(o)) do

Following (48) f(v(s)) satisfies

1£((s))lsra) < C (1 +]s])2 € L'(R,) ,

therefore we conclude D(—t) ¢(t) is converging in (H5(R3))*. u

Proof of proposition III.1: We note that (i v#3,) (—14*9,) =

— [, so we have:
O¢ =i 0u(F(P9,i 97 9)) ¥
+ir  F(§v, 97 ¥) 0,
O¢ =iz, 7" 7" 0u(F(¥ 9,7 ¥7° ¥)) ¥
Hiz, YA PP, i7" ) 0,9
F2FE 6,97 ) ¢,
Following decomposition (33) we write |
p=¥+p,
where
Y=z,7"Y¥, p=z,7"x,

satisfy
O¥ =0, Op=04¢.

We note that thanks to (6), (9) and (11)

T Y AP O (F(9 i 97 ¥)) ¢ =

(61)

(62)

(66)

=(2y 0y~ 2, 0,) (F(W U, 197 Y)) ¥ 1* ¥ + 0, (F(D ¥, 1)) v¥¢

and

iz, Y Y P, iy ) a0 =

= -z, F(Y ¢, i 91 )1 FY v, i 97 ¢) ¢ .

(67)
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Now we recall the energy estimate of [12] for 0 < ¢

le@ii < ¢ {e+ [0+ 9lIOAEs} - (69
We obtain with (62), (65), (66), (67),
@ e)(s)ls < (69)

<C{IFG)Ii [0+ F )3 1@ HIF ()13 16()3+F(s) 3 (o)1
+ (14 9) 1F ()5 (PG5 9+ PO 1)}

where we have put for simplicity
F(s)=F(dv,i 91" ¥)(s) - (70)
But (32) gives
F(s) = F(Tx+X¥+Xxi ([@1* x+X71° ¥+ %7°x) (). (71)

Now we use proposition II1.2 and (71) to obtain for 0 < s

IF(s)ls < € (1+ 27 {lle(a)lli (Ix(s)13 + 1% (o)) (72)
+ (813 lxto)llz + Ixto)ls (I()1 + [1() 1 + x(s)11E)}
1E @ < € (1 +9)7 {le(e)lz (Ix)l: + %(s)]3) (73)

+Ixte)l; (194e))3 + ()t + Do)z} -

We recall that ¥ and ¥ are free solutions of wave equation with
test functions initial data and then

sup (|| (s)]15 + 1% (a)7) < +oo - (74)
scR

We have so by (46bis) and (48bis)

sup x(s); < 200 (75)
s€R

sup [|$(s)[|§ < +oo, (76)
scR
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and by (39)
sup(1 + |s]) [x(s)]z < 2C"e0 , (77)
s€R
sup{(1+ |s)) ([¥(s)l3 + 1¥(6)l; + [E(s)]3)} < +oo . (78)
On the other hand Sobolev type inequality (39bis) gives
le(s)lz < C(1+5) " lo(s)lli - (79)
We conclude from inequalities (69) to (79) that

I(@e)(s)lls < C(1+)7°[B(s) (1 + B(s)) + o], (80)

where
B(s) = sup |lp(o)]ls . (81)
0<o<s /

Now (68) and (81) imply for 0 < ¢

B(t) < C{eo+ /t(1 +5)72 B(s) (1 + B(s)) ds} (82)

0

and by using Gronwall lemma:
B(t) < CoepexpCo B(t) , (83)
where Cy > 0 does not depend on t. Let 0 < Tps be such that
Ta = sup{T; 0<t<T, B(t)< ZCoeo} )
We choose €¢ > 0 such that
2CEeq < log?2 . (84)

Suppose Tpr < +00. B(t) being a continuous increasing function of ¢,
B(T) satisfies

B(Tsm) < CoeoexpCo B(Tn), B(Tum) <2Che . (85)
Thus (84) and (85) imply

B(TM) < Cy &9 exp20§ €0 < 2Cheqp . (86)
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Again by continuity of B(t) we conclude from (86) that

B(t) <2Coeq for 0<t<Tpm+n,

471

for some 0 < 1 small enough; it is a contradiction with the definition

of Ty and we conclude that Tps = +o0o and

sup [|p(s)||3 < +o0
teR

and with (74)
sup ||¢(s)||3 < +oo .
teR
Proof of theorem III.2. Relations (2) give

(£ — |z|*) ¥(t, 2) = (zu7* $)(t,2)
where as usual

0 1 .2 .3

t=20 z=z'2%2% [off = |2 + |27 + |27

We remark that
supp © { 2| < |t + R}

and thus
sup |z 7" (¢, 7)| < CS‘:P(l +1t]) 16(t) | Lo(msa) -
Now (39), (57), (89) and (90) imply
sup|(t* - [al*) ¥ (¢, 2)| < too

that assures (51). »

Proof of theorem II1.3. Proposition III.2 implies

[ w(t, z)| + [97° o(t, z)| < C |7 g, z)] 19(t, z)]| -

Now (39) and (48) give

sup{I¥(0)liamsy + (1 + 16) [H(0)lLmimy} < oo

(87)

(88)

(90)

(91)
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and (39) and (57) give
sup{ (1) lams) + (1+ [t [6(t) Lm(ry)} < +o0 . (94)

At present (54) and (55) are immediate consequences of (92), (93),
(94). =

Proof of proposition III.2. Thanks to (2) and (3) we have
1(eu 7 27+ 2u 3 2, 1) = (8 + [2) By v
and with (6)

D1(2a 7 7° 2 20 + 2u A5 9 2 7Y g = (82 + [22) By 1 s
that prove (59) and (60). »
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