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1 Introduction 

A numerical solution of the integral equations for the 3-D exterior problem 
of electromagnetism, leads to the solution of dense linear systems. Those sys-
tems have generally a bad conditionement and a size that strongly increases 
with the frequency. We then consider the Despres's Integral Equations to 
have a well conditioned system ([5], [8]). If Niter is the number of iterations, 
the classical complexity of the iterative solution is O(Niter ",4), where", is 
the wave number. In order to speed up the solution of the system, we have 
considered the coupling of two methods, the microlocal discretization method 
and the fast multipole method (FMM). The microlocal discretization method 
according to Abboud et al. [1], enables one to consider new systems whose 
size is 0(",2/3 X ",2/3) instead of 0(",2 X ",2) thanks to a coarse discretiza-
tion of the unknown for convex geometries. However, due to the geometrical 
approximation of the surface, the fine mesh of a classical solution is still con-
sidered. An other method, the fast multipole method ([6], [7], [4]), is one of 
the most efficient and robust methods used to speed up iterative solutions. 
Using a multilevel algorithm, it leads to the cost O(Niter ",2 In ",2) instead 
of O(Niter ",4). In this paper, the coupling of both methods, using a multi-
level algorithm, enables one to reduce the CPU time efficiently for large wave 
numbers, with the complexity 0(",8/3 In ",2 + Niter ",4/3) (see also [2]). The 
numerical results show that the new method is in certain cases more effi-
cient than a classical use of the multilevel FMM. Such a coupling has been 
proposed for Helmholtz's equation using a one-level FMM ([3]). 

* That work was performed at CEA/CESTA and Bordeaux-l University 
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2 Despres's integral equations 

B. Despres suggested new integral formulations for 3-D Maxwell's equations 
and Helmholtz's equation. The EID (Despres's Integral Equations) lead to 
new systems with such properties that one can use an efficient iterative solu-
tion based on the conjugate gradient. The Despres's Integral Equations are 
derived from the separation of the real part and the imaginary part of the 
Green function and from the introduction of a new unknown. For Maxwell's 
equations, using a Raviart-Thomas finite element discretization, after dis-
cretization of the integrals on the surface, the systems introduce the following 
discrete matrices, i, j E {I, .. , N} 

= ai ajQr(xi, Xj), = (3i (3jQi(Xi, Xj), ai, aj, (3i, (3j E <C, (1) 

where Q depends on the Green function and its derivates. The different 
matrices may be treated on the same way. Then, we henceforth consider 
Qr(X, y) = Gr(x, y) = (cos(lilx - yl))/(47l'Ix - yl) and Qi(X, y) = Gi(x, y) = 
(sin(lilx - yl))/(47l'Ix - yl). The system to solve which can be obtained with 
a minimization problem with linear constraints ([5]), is a Stokes-like system. 

3 Coupling of the microlocal discretization 
and the fast multipole method 

The first step consists in the consideration of the approximation of the phase 
function leading to the microlocal discretization. We assume that the obsta-
cle [2 is a bounded open convex domain in ]R3 of boundary F and u ine is an 
incident plane wave. The previous matrices are given by a classical discretiza-
tion, for a classical mesh Ff with N = N f elements, N f rv li 2 . Then, denoting 
by cPo the first degree approximation of the phase function of the unknown q, 
we consider a new unknown q such as q = qeil<¢o. Due to the sharp error esti-
mates on q, the change of unknown enables one to define it on a coarse mesh 
Fe, with a number of elements Ne equal to O(li2/3) instead of O(li2). How-
ever, because of the geometrical approximation of the boundary F, we have 
also to consider the fine mesh r f with a number of elements N j = O(li2), 
to evaluate the integrals. Those considerations give a new system to solve. 
Considering rj as a refinement of re, we can consider the elements of re as 
groups of elements of rj. Let Hi be the number of elements of rj included 
in the ith one of re. So, the (io)th element of rj included in the ith one of 
re will be denoted Ti io' Let 7l' be the orthogonal projection from the plane 
triangles of re to the ones of rj. Let <Pi be the vectorial basis function asso-
ciated to the ith edge of the coarse mesh re. It is defined on the coarse mesh 
and the discretization of the integrals on the surface needs to be defined on 
the fine mesh rj. Moreover, the basis functions need to be defined by vectors 
that are tangential to rj. Then, let <pi be the projection of <Pi on the space 
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of vectors that are tangential to rj. Xi io denoting the quadrature point on 
Ti io' using the test-functions eiK¢orpi, the new discrete matrix has the 
following form 

io=l jo=l 
(2) 

. rpj(7f- l (Xjjo))' rpi(7f-l(Xiio)) Gr(Xiio, Xjjo) . 

Hence, we obtain a problem whose size is O(K:4/3) instead of O(K:4). Thus, 
the gain about the memory cost is very interesting. However, due to the con-
struction of the matrices, with the consideration of the fine mesh r j , the 
calculation cost is still O(K:4). To reduce that cost, the authors T. Abboud, 
J.-C. Nedelec and B. Zhou, suggested the use of the theory of the stationary 
phase but the numerical approach of that theory implies difficulties not yet 
solved in 3-D. We suggest then the use of the multilevel FMM (MLFMM) 
to speed up the calculation of the matrices without the theory of the sta-
tionary phase. The FMM is a robust method that speeds up the calculation 
of the matrix-vector products of iterative solutions. The method is based on 
two developments. Through clusters of elements, an uncoupling between two 
points of the boundary rj is obtained using the Gegenbauer series and an 
integral around the unit sphere S2. Let Ym, jm be the spherical Neumann and 
Bessel functions and Pm the Legendre polynomial. Let Xl, x2 in rj; 0 1 , O 2 

the centers of the two clusters Cl and C2 containing respectively Xl and X2. 

Then, Xl - X2 = ra + r where ra = 0 1 - O 2 , r = rl - r2 and ri = Xi - Oi' 

With Iral > Irl, the multipole approximation for the real part of the integral 
kernel of the EID is given by 

(3) 

where l K:d + c(K:d)1/3, d is the diameter of the multipole boxes, C depends 
only on the desired accuracy and P = (2l + l)(l + 1) is the number of quadra-
ture points on the unit sphere. The MLFMM needs also the consideration 
of an octree. It implies several levels of clusters C. A classical MLFMM uses 
all the levels of the octree, from level three to the fine level. For our use, we 
will see that we should not consider levels that are coarser than the levelleve 

whose the number of clusters is O(Ne). Let V(C) be defined for each cluster 
C of each level lev by 

V(C) = {C/C far from C and Ca close to Ca } if lev> leve 

and V(C) = {C /C far from C} if lev = leve 
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where Ca is the antecedent of C in the octree. Let Tt be the set {Xiio, io = 
1, ".,M}. If we consider the matrix Mil? given by (2), the multipole approx-
imation of the far part is given by the following algorithm 
• Step 1: Transfert functions: For each considered level, 
'V(Oc - Dc;), C E V(C), 'Vp E {I, "., P} 

I 

(sp) = L (2m + I)im Ym(IiIOc - DC I) Pm (cos(sp, Dc - Dc)) . 
m=O 

• Step 2: Local translation (radiation functions): For the finest level, 
'Vi E {I, "., N e }, 'VC FMM cluster such that Tt n C =I- 0, 'Vp E {I, "., P} 

The radiation functions at the other levels are obtained by interpolation ([4]). 
• Step 3: Matrix approximation: For each considered level, 'Vi, j E {l, "., N e } 

+-
P 

+ LWp L Fic(Sp) L Troc-oc(sp) Fjc(sp) . 
p=l c/T;nc=P/J c/TTnc#0 

CEV(C) 

The same process enables one to approximate the matrix M8'. 
Indeed, a matricial element corresponds to an interaction between 

two objects Tt and TI. From an intuitive point of vue, it appears no use con-
sidering FMM clusters larger than the triangles Ti and Tj . Actually, regard-
ing the complexity of the different steps in detail, we clearly have to consider 
only the clusters smaller than the coarse triangles of Te. Thus, we work out 
a suitable multilevel fast multipole algorithm considering a reduced number 
of levels. Theoreticaly, an iterative solution using that new method has the 

. (4/3 2/3) memory cost O(Nf ) and needs the CPU tlme 0 N f InNf + NiterNf . 
Numerical results show that it can be less than the cost of a solution using 
the MLFMM for quite large cases due to Niter and other constant factors. 

4 Numerical results 

We give now numerical results that were obtained for the perfect conductor 
unit sphere. For the second result, the sphere has a size of 26 A and the 
frequency is 3.2 GHz. The solution was based on a mesh with an average edge 
length about l.6 A instead of the classical A/IO where A is the wavelength. 
Thus, that case using a fine mesh with N f = 327680 triangles, is solved 
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discretizing the unknown on a coarse mesh with Nc = 1280 triangles. The 
figures show the bistatic radar cross section (RCS) obtained with our new 
method denoted by FMD in comparison with the exact solution obtained 
with the Mie series. For the first case (F = 1.6 GHz), the CPU time required 
by the new method is 3 hours and 20 minutes instead of 7 hours with a 
classical use of the MLFMM. For the second one (F = 3.2 GHz) , the new 
method requires about 13 hours instead of about 35 hours for a MLFMM. 
For those cases, the new method is more efficient than a classical use of the 
MLFMM. 

5 Conclusion 

The method we have developed couples two kinds of methods in order to 
speed up the solution of integral equations. Firstly, concepts of the geomet-
rical and physical theories of diffraction enable us to reduce the size of the 
systems, using the microlocal discretization introduced by T. Abboud, J.-C. 
Nedelec and B. Zhou. Secondly, an original use of the FMM enables us to 
speed up the calculation of the matrices of the new systems. Such a combi-
nation has resulted in a new method that appears quite efficient. Moreover, 
the coupling have been performed within a new integral formulation which 
is suitable for iterative solution. 

Now, we plan to work on non-convex objects, by considering new approxi-
mation of the phase function, and on a coupling with a finite element method 
for inhomogenous media. Moreover, the new scheme may have several other 
applications in electromagnetism. 
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