Scattering by Black-Hole for Electromagnetic Fields
A. Bachelot

Department of Applied Mathematics, University of Bordeaux I,
F-33405 Talence Cédex, France

I - Maxwell equations in Schwarzschild universe

We investigate the electromagnetic field outside spherical Black-Hole of
radius r, >0, described by Schwarzschild metric

(@H)] d82=azdtz—a_2dr2—r2(d92+sin29d(p2) y To<T,
and lapse function « is given by

@ a=(1-r, rrhlz

This metric is singular on the "Horizon" I = R, x {r= rol x S2? and no radial
null geodesic reaches I' at finite time ¢. With Wheeler coordinate r . the

equation of such geodesics is

3) t=tr_+C, r*=r+rO€n(r—rO).

In Schwarzschild vacuum, Maxwell's tensor F verifies equations :
4) dF =0 , d+F =0,

where x is the Hodge operator related to metric (1). We split F into electric
and magnetic fields measured by an observer with four velocity u :
e v e v
(5) E = ] S B, = (*F)#,V u’.
Since we are concerned by scattering theory, we consider the Black-Hole as a

perturbation and we choose an observer at rest by respect to the Black-Hole
(Fiducial observer of [6]), and then

(6) u=qal at /
By putting
@ W= B Y BB B S (o, by
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where 2,
X=X"ad,+ X0r 19, + X? (rsin oawes o siEhE

H

Maxwell's equations (4) take a familiar form

®) %U=-iHU , V5.E=V4.B =0,
where Y :
i i 0 " rsin® 9 rsind dgsin

e ks % £y %,

9 H-= l(—VSx 0 ) ) VSx = — B(P 0 = a,ra
(04 (04
—799 ?arra 0

(10) Vs-X=ar 0,2 X )+ (rsin 0) (2, (sin 0 X% ) 43, X1

If there is no Black-Hole, a =1 and we find the free dynamic in Minkowski
space-time with spherical coordinates. We introduce the Hilbert space of finite
redshifted energy :

£ =[L%(Iry, + oo, xS2 , r2drdw)®,
and the subspace of free divergence :
#={Ue# ; Vg.E=Vg.B=0}.

THEOREM 1.1 - H s a sel fadjoint operator with dense domain on ¥ and on
X .

Then we solve the Cauchy problem for (8) by Stone's theorem.

REMARK : We are not concerned by a mixed problem : we do not need any
boundary condition on horizon I' which is not time like.
We have a result of finite velocity dependance :

THEOREM 1.2 - Let'sbe U in # such that

supp U c {ri = ps rf} sz;
then we have
suppe ™ Uc (vl -t <r <r2+ e xS2.

Schwarzschild metric is trapping : all great circles of sphere with radius
3r,/2 , so called "Photons-sphere”, are null geodesics ; there exist so null

175




geodesics asymptotic to the Photons-sphere. Therefore singularities of field can
be trapped and do not escape at infinity. Despite of this difficulty, there is no
time-periodic solution in Schwarzschild universe, unlike the euclidian case
with an obstacle, for which, the second space of cohomology yields non trivial
stationary solutions :

THEOREM 1.3 - The ponctual spectrum o f H on ¥ isempty.

We can deduct from this result, the decay of local energy ; but we developp here
a complete scattering theory for the electromagnetic field and in particular, we
find the result of Damour [3] on the behaviour of fields near the horizon. The
study of scalar case was treated by Dimock and Kay [4] [5] .

II - Wave operators at infinity

Schwarzschild universe is asymptotically flat and far from the Black-

Hole we compare hamiltonian H with classical electromagnetic hamiltonian
H .
o

i 0 curl
@ B (—curl 0 )’

in Minkowski space-time with metric
(10) ds?=dt® - dp? — p? (d0? + sin20 dp?) , 0<p.

For any choice of p = p(r) , the difference H — H o 1s a long-range type

perturbation but because the radial null geodesics (3) are straight like their flat
analogs, we avoid long range interaction between gravitational and
electromagnetic fields by choosing :

an pi=r 2 0%

We introduce the usual finite energy Hilbert spaces :
®,={U,=4E],E? ,E? B} ,BY B¥)e[L 2R}, xS2, r2dr, do)l%),
X,=WU,="E,,B)e ¥, ;divE,=divB,=0).
Given a cut-off function y e SRR IR;L*) satisfying, y (r,)=0 for 0 <r «<a,and

X )= 1 forsnimabis; forisome .0i< gi< b v wie sconstruct -an identification
operator S :¥ — X by putting :
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yOUOZZOUO fOI‘ 7‘*20 y ]OU():O for r*so.

We define classical wave operators without Dollard's modification :

WoU, = s— lim ¢ g o7 . jn. % .

t—too

The spherical invariance of Maxwell equations - that implies a t_2decay of
radial components - and our choice (11), cancel the long range effects and by
Cook's method we prove the

THEOREMIL1- Wy :%#,— % exist, are independent of y, and W5l <1.
We deduct from this result, the existence of outgoing fields :

THEOREM I1.2 - If U,e X , verifies:

e—itHanzo Jory S S <ty @
then we have
e—thoW'*‘SUO:O for s e G

III - Wave operators near the black-hole

Hamiltonian H degenerates as r — 1, 3.but roH(ra)™! admits a formal
Limit H,

0 o 0
0 2
13) Hy=i (—h Olj NG S
1 g

H; is essentially the dynamic in Rindler metric that approximates

Schwarzschild metric near the horizon. We introduce Hilbert spaces :
¥1=U,=4ES EY,E?,B,,BY BhelL AR, xS2,dr,do)%,
#1=Use #,;E =B =+E{+BP=+E} Bi_q)

The fields in # “i(“) have an left (right) polarization and behave like a plane
wave, falling into the future (coming out of the past) horizon :
Ui =E™U]¢, , 0)=U&t+ r; , 0) .

Given a cut-off function y 1€ C(R,,) satisfying i@ D=l -ifonin e & x1r,)=0
for r_>d, for some c<d <0 » We construct an identification operator
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LI :le—> # by putting
S U o) Ty Uy -

We define classical wave operators

(14) WiU =s-lim e g iy in % |

t—too
Because the Schwarzschild potential is exponentially decreasing as r, — —co,
we prove easily by Cook's method the :

THEOREM III.1- Wf S f—)]f exist, are independent of x, and | W{ | <1.

We deduct from this result, the existence of infalling fields, similar to the
disappearing solutions in dissipative scattering :

THEOREM IIL.2 - If Uje ¥} verifies

Uilr, ;0)=0 _for r,zc
then we have
e‘”HWi{Ulzo Jor r 2tt+c.

IV - Asymptotic completeness

To study the asymptotic behaviour far from the Black-Hole we introduce

(15) W, Uss-Mimle®o s* o4 " in' "%

0
t—+o00

At infinity of Schwarzschild universe, the electromagnetic field is asymptotic to
a free field in Minkowski space-time :

THEOREM IV.1- W, : ¥ — X, exists, is independent of Xo and W, | < 1.

To describe the field near the horizon as ¢ — +oo we define

(16) Wy U=s- lim eigte#y i 7.

t—+00

THEOREM IV.2 - W, :# — X7 exists, is independent of %1 and |Wq| <1.

The physical meaning of this result of completeness is the famous "impedance
condition" of Damour and Znajeck [3]. More precisely the asymptotic profile of
regular fields satisfies a dissipative condition or infalling left-polarization :
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THEOREM IV.3 - Let'sbe U in ¥ such that
a7 U=HF"; felCS0r; mrodl xS0

We note e *H 7 = L gf ,...,Ba’). Then, for any scR , there exist eF,..., 5% in L?(S?)
such that, as

(18) PP, bkl =5 )

the following limits exist in L2(S2) -

(19) E" e \B" 5b" ,aE% 5 e%, aE® -5 ¢® ,aB? 5 b%, aB® 5 p? .
Moreover, we have

(20) eéz—b“’ e‘7’:b§

b

1) dse” +(sin0) ™  [Dy(sind 6% +3, 571 = 0.

Remark by Theorem 1.3, the set of data satisfying (17) is dense in # .

So, the horizon is rather similar to a dissipative membrane in euclidian space
with surface resistivity 377 ohms : (20) is formally the impedance condition and
(21) the charge conservation law ; but we emphasize that, unlike the euclidian
case for which the dissipative condition is posed at each time and is necessary
to solve the mixed problem, impedance property (20) is a consequence of
Maxwell equations verified at infinity of infalling null geodesics.

Now, we can introduce scattering operator S by putting

W # i x®,>% , WU, U)=W3 Ut Wl
W: £->%]x%, , WU=W,U,W,U),S=WW~: %] x %, S EIxE,.
THEOREM IV.4 - W~ is isometric from ¥ 1 X ¥, onto ¥ w Is isometric
from X onto #7x¥,, S is isometric from X x¥, onto H{xX,.
V - Membrane paradigm

The Membrane Paradigm [6] states that if we are concerned only by the
behaviour, far from the Black-Hole, of an initially incoming field, we may
approximate the Black-Hole by a dissipative spherical membrane of radius
ro+& ,0<e¢, called "streched horizon".
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We consider the mixed problem for Maxwell equations (8) in
Ir j+e,+00 x S? and on streched horizon I' =R, x{r= Fot gl %8 2 which is time
like, we impose impedance condition

A ~ ~ ~

(22) E?=_B® . gP_po

It is a classical dissipative hyperbolic problem of which the solution is given by
a semigroup V.(#) on Hilbert space # = {Lz(]r0+ g +oo[ . x S f) ,r2dr dw)]% . For
O<e<a we define scattering operator

SeUp=s—lim e g2V o1y 5 oitHoy i

0"
t—+o0

THEOREMV.1- S, : Xy X, exists, is independant of %, and |S,| <1.

Now, in Schwarzschild universe, the asymptotic behaviour at infinity of
an initially incoming field is described by operator S 0o defined by

23) VU, , SopU,=11,80,U,)

where IT, is the projector from XXX o onto X, . The following result is the

mathematical foundation of Membrane Paradigm :

THEOREM V.2 - For any er.%’o e U, tends to Soo U, in X, as € — 0.

Of numerical analysis view point, impedance condition (22) is an absorbing
boundary condition on artificial boundary I’ ¢ » 80 called Silver-Miiller radiation
condition in euclidian case [2]. So, Theorem V.2 gives a method of numerical
approximation, already used in [6].
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