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Time dependent integral method for Maxwell's system

Alain BACHELOT and Virginie LANGE*

~ Aastract. We solve the problem of diffraction of an electromagnetic wave by a perfectly conducting body
wmz a boundary integral method in time-domain directly. In this work, we extended to the three-
“mensional case the method developed by A. PUJOLS (6] in 2D using spaces coupling time and space
 woruduced by I. TERRASSE [8]. By studying the associated frequency domain problem, we prove the
wmiinuity of the associated areal operator. We obtain results of stability and convergence in this time

wsctional framework. The discret approximation of the variational formulation leads to a stable marching-
. ime scheme.

~ Iztroduction.— The time dependent integral method was applied by HA DUONG [4] in 1987

& salve the equation of waves in dimension 3D+1. He also defined a functional framework

‘=< by E. BECACHE [2] in elastic waves . It is in this framework, that A. PUJOLS [6] proposed
= 1291 a variational formulation for Maxwell's system and implemented the associated

 wheme in 2D+ 1. In 1993, I. TERRASSE [8] introduced new spaces coupling time and space and

wsaived numerically Maxwell equations by Lagrange's multiplyings. We decided to study

= formulation given in [6] in 3D in this new framework, and to implement it directly.

"hen. we consider a tridimensional object Q°, with regular bounded surface I' and exterior

mormal r_z), lighted by an incident wave (Ei, H) that hits the scatterer att=0.

- 8= scattered field (E, H) satisfies in Q*= RA\Q " the Maxwell equations:

=
curlE+ud,H=0 in R'xQ*

CUurlH-¢,3,E=0 in R'xQ"
divE=0=divH in R'xQ*
ErR|r=¢ onR'xT
E(t,)=0=H(t,.) fort<0

tangent vector E’ is given by the incident electric field
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E’:—E‘)\?ﬂr onRxT

The constants p,and e, are respectively the magnetic permeability and the electric
permittivity . We consider so an interior problem defined by extending the field (E, H) into the
interior domain Q7: :

— N e
curlE+pd,H=0 inR"xQ

— S it e
curlH—e0,E=0 inR"'xQ
divE=0=divH inR'xQ”
EAn Ir= z onR'xI"
E(t,)=0=H(¢,) fort<0

(P)

2.Representation of (E,H) by retarded potentials.— By using the classical integral

representation, the solution of (P%) can be represented by the retarded simple layer L of
-
densities j and p:

g —
(1) E =—puyLds j —grad,Lpin R™x (QUQ")
T
(2) H=curlL j in R*x(QtuQ")

where L is the operator:

t=| x=yl¢,¥)

(
Lp(t,x) = jr" I dI'(y) for teR* and x € R?

. N 2 1 =
where |x—y|, designs the ratio = with ¢*= e and the surface current and charge j and
ofo
p are the jumps:

=
J (&%) = WAHY .~ WAH [ V(t,x) e R*xT

p(t,x) = B.E - B.E" V(t,x) e R*xT
They are connected by the equation of conservation of charge:
i +
(3) divpj +e0,p=0 on R"xT

The mathematical study will be easier if we use an intermediate unknown 3 defined by the

jump:
-
¢ = curlEAT 1~ cu_)rlEJ’/\'ri)Ir onR*™xT

The representations become:

t s
(4) E(t,x) =Lg(t,2) - Cgrad,L( [ [ div-¢(0,x)dods) in R*x (QUQ)
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t
(5) H(t,x):—#lc;;le( [, P0ds)  inR*>(QUQD)

Applying the boundary condition on the tangentiel field, we obtain the integral equation:

(6) H@(t,x) = nAg(t,x) V (t,x) e R*xT
with
o the operator H given by:
t—lx—-yic s

%
HG (0 =Ty, [ s 0 G- 1e91) ) dy— gradr, [ s [ [, divr @ (oy)dody

. and the maps:

M f(2) = =R (AR @A f| ) grade,f(2) = — 1 (AR (D) agrad,f )

We can see that the resolution of the equation (6) leads to determinate the field (E,H) in Q"'uQ~
thanks to relations (4)(5).

3.Functional framework.— Before introducing the functional framework, we shall do some
r=calls about the Fourier-Laplace transform. Let E be an Hilbert space, we note 9;(E ) the set of

Z-valued distributions, and ¥ ‘(E) the set of E-valued tempered distributions with support in
E . For real o, 6>0, we can define:

LT(c,E) = {Te D(E), e "' T e 7.(E))

2nd the Fourier-Laplace transform T of T
~+00

T(w) = 7T = | " T()dt

where 7 is the usual Fourier transform and the frequency o = n + io.

W= are ready to introduce the spaces presented by I. TERRASSE in [8]. Forse R, and ce R, we
Zefine:

+ootio
HY(RYH°(Q)) = { feLT(o, H°(Q)) ,j_ma lo|*IF (@) 1|2 ,0do <+oo }
w=:ch is an Hilbert space with the norm:
. 1 +o0+Ho R
W13 e B0 ) =350 ., 1@ IF (@5 o do
with:
¥y e H' @), Il 0= 1o W Do ( 00y where ¥y e H(10IQ), 70 = 1 F D)

"= definition was extended on the surface I'. Before, we have to introduce the spaces:

HO(div,T) = { f e HO(D): £. 7 = 0, div;- fe H°(I) }
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H%(curl,T) = { fe HO(I): £.7 = 0, curly. fe H°(I') }

Then, for s € R and o eR

+co+ic
HS(R*H(div,])) = { f € LT(o,H®(div)D)), | oo 1017 IF @15 4 g doo <0 ),

with the associated norm:

2 1 Fee 28| 7 2
WAl 0% v, 0y = 5] . 190/ WF (@) 12, 4, do
and
¥y e B @i |0, IFlZ0r = PO g i)

(resp Hy (R*,H® (curlT))
These norms are equivalent to the usual norms and we have the

Proposition 1. For all |o|> o,and o> 0:
C(o)—(0+l)|lflla,w,divr < “f”Ha(div,r) <C(o) (°+1)Im|(a+1)”i“

a,w,divl—-

C@) 10 Wl s agivg < 17l,=0( gz ry S C0) 0] 17 o0
where C(o) = sup(%, 1)

We have the same result for H°(curl,l") by replacing in Proposition 1., div by curl.

4.Variational problem.— Adopting HA-DUONG’s approach, we study the associated

harmonic problem to deduce properties of H by using Fourier-Laplace transform in time.

Harmonic problem.

Therefore, the integral equation (6) becomes:

(N H,p(x) = Wag(x) V xel
where

o ¢ is the jump of curlEAT through I'.

° g=—En 71,)[1—

o H, is the operator defined by:

550y e | A GO R Sl
(8) o b e Ry oy ke [T r o elhdy

We can prove the

Proposition 2.
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T =C, Im(w)=0>0, H, is an isomorphism from H™2(div,T") into H Y2 (curl,T") and

—sfies :
X C i~ ~ 12 £
15y Oll_1v2,0,r0 < 219 | 1p0,div, ~ VoEH T (div,T)
The associated sesquilinear form :
- b,(0.¥) =<9 —ieH, ¥ > V ¥, € H"(div,)
o s=es the coercivity condition [8]

e Re (by(§,-i09)) 2 CD)2- 1 I2ve.0,div. Y oeH  (div,T)

‘he, the harmonic problem (7) can be solved by the standard variational method.

Tme-dependent problem.

‘2o wing the inverse Fourier-Laplace transform to the solution of harmonic problem, the time
emendent problem (6) is well-posed : for z given in Hf,(]R *H*2(divT)), and s € R, there
‘wwsts 2 unique solution ¢ € HS2(R*H *2(div,T)) .

“wrseval formula applied to (9) leads to the space-time variational formulation of time
temendent problem :

@

;) b, W) = [ e<HAF D, V>dt V Ve HRYH YA (div,)

wmaTe

oo

b(9, W)= [ *U<HG 2, y>dL.

s raket denotes the product of duality HS(R*,H Y (curl, 1)) xH,*(R*,H Y(div,T)).
%= remark that the continuity of H and coercivity relation (10) implies the continuity of b into
BT H (div,)D)xH2 (R *,H 2(div,I") and the coercivity relation :

b(9,8) 2 COGI TNy o V2(divry ¥ @ € HERYH (div,])

. Approximation of the variational problem.— We want now to discretize the variational
- (11) using finite elements. We first make a space approximation.We construct an
weoroximate surface Ty, of ' composed by regular triangles I';. Hence, we consider the edge
~ement family of RAVIART-THOMAS (7] divergence conforming space V, consisting of

ww vmomials of degree one. P! denotes the inverse map of (P : ', - I'). We can also define
B
e space:

V. =1 $=¢0P'1;(p€Vh}

oo the unknown ¢ is represented by an expansion of basis function ¢ ; for j=1,Ne of V,
E-=
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Pty ~ @ ,(ty) = 3 () 9, ()
. J:

where o; € H:(R*R),seR.

We choose the test function as:
Vx) ~ ¥, (5% = Bi(5) 3,(x)

where ; € Hi_s(]R*',]R ),.
The discret problem consists in finding o; for j=1,Ne such that:

t— |x-y| r

(12)2[ ‘2°tat/3(t)f j { K () a (-] x-yl, 54 PR (xy I, [ a;(sHds'dr )

)dI'(x) dI'(y)dt

@

_ ‘[o 20t fr WAEu(t,x) . @, (2)dT(x) dt

where }?h is an approximation of ? in H‘S,(]RJ*,;,,) and KEJI) and Kﬁf) are defined by:

i PACORAC) 3 div, $.(x) div. ()
K" = —— I o K x,y) = .
4m| x—y| ¥ 4r|x—y|

In a second step, the positive time axis is divided into subintervals I, = (#4811 of length At.
The function of HS(R*,R) is approximated by those of the subspace H'(At,R), m e N , composed
of polynomials of degree m>s in each time interval I 0

Thanks to the continuity and the coercivity of b, there is a unique solution E); in Hf,nl(At, gh),
m; €N and m, > s of the discret problem :

00
A2)b(¢5, Vi) = [ e '<WnaZi0,¥i>dt v Ve H™2(AL V), my, €N and m,> 1 s
where
—t > 5
b(@h ¥ = [ e<HG 8, V> dr.

Before choosing time approximations, we present results of stability and convergence.

6. Stability and convergence.— These results are obtained for an exact surface. If T is
approached by a surface I';, we can follow Nedelec's idea [5].We want to use the continuity
and the relation of coercwlty of b, then we take s=1/2 and we obtain the result of stability.

Theorem 3 Let gh be a consistant approximation of g in Hs/z(]R H2(div,I)), then there
exists ¢>0 such that :

Il ?;,“_1/2,011”1/2(&,})1-) < C when h—0 and At—0.

We can prove the convergence of the method by adapting the Lemma of interpolation of [4] and

estimates of [3] on the functional framework introduce in [8] thanks to the proposition 1.
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Ly e
Lemme 4 For all p} e H™(At,V,), m,>0, we have:

I o I Ve < Ch A Y oy I 2
P rllypo Y2(div,T) = P rll_yp 6 H Y2 (div,T)

Then, we can deduce the theorem of convergence:

Theorem 5 We suppose that ¢ € H'V2(R*,H™(div,1)) N HF22(R*, H) , with m;>1, my>2
We denote H = H Y2(div,T) N 12 (T'). Then for all ¢ e]O,% s

557 =y el ek
Ie = Eall ypomr2dinm SC 18 — &all 4o 0 5 2(gin 1)

hm1—£—1/2 s Atm2—2

ﬁ
+ At2 " 4 ” m1+2,G,Hm1(diU,F) e h1/2 “ ¢ “ m2+2,6,H )

7.Numerical results.— ,

Now we return to the approached surface I';.To dbtain a stable and convergent scheme, we
should choose an unknown in H4(At,Vh), that is unrealizable! So, one tests an approximation
oy constant polynomials i.e. s=0 and the stability and convergence will be tested numerically,

with two sorts of incident waves: a sinusoidal wave and an impulsion. We take o = 0.
Scheme Pjx P/,

Firstly, let us consider the simplest choice of approximations.The approximate functions of o;
znd f; are taken in H°(At,R) and in H*(At,R ) respectively:

o ()~ XY X™(B)a} forj=1Ne 1) =) 1 iftelttnnl
mz1 0 elsewhere
l 0ift<t, ;
B, (t) ~ B'(t)a’ fori=1,Ne B = { t—t, if telt, bl
At if t>t,
With a simple substitution into (12) and some additional manipulations, we obtain the matrix
form:
D°X '=Su*
19) oA WY
D°X'=— Y D"PXP+SM’ forl>2
pP=r
% At
o bl
et DIZ': Jr '[r {Kf,'j (x,5) “‘ox P(s + t—lx—yl)ds

At s+t -|x—yl, ¥
+ K (x,9) jo , [ #P(shds'drds ) dT(x) dT(y)
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The discret problem is a quasi-explicit marching-in-time scheme: a single inversion of the
matrix D° is required. We have tested this scheme on a sphere of radius 1m approached by 80
triangles. We represent the solution computed for different values of CFL= cﬁat the lighted
point of the object. For CFL=0.3; 0.5 or 0.8, one can observe a quick blowing up. So, we decided to
take another time approximation: the unknown and the test function are both chosen in

HYR*H(div,T)).

Scheme P, x P,.
The functions a; and B, are approximated by:

a; () = T X™(8)aT for j=1,Ne B; (t) =~ X'()a for i=1,Ne
m21

We obtain a similar matrix system as (14) and now the scheme is stable. The two figures
present results for a sinusoidal wave and an impulsion respectively for CFL=0.5 and the
frequency F=50MHz. We take always 10 grid points/wavelengh. Increasing the number of
triangles, frequency can be taken higher. Results have been valued using the theorem of

limited amplitude.

0.0010

0.0005

0.0000 |- A “eoer g

-0.0005 |-

-0.0010
0

e sae 1e3e 1530

7.Conclusion.— In this paper, we have solved Maxwell's system for conducting obstacles by
an integral method based of the representation of the electric field by retarded potentials on the
surface I'. By using Fourier-Laplace transform, we obtain a well-posed variational problem
and the continuity of the associated sesquilinear form. The stability and convergence are
proved but require a to high order approximation. So, we consider a weaker approximation and
obtain a numerical stability. The scheme is constructive and is directly solved.Therefore, we

can conclude that our scheme is perfectly robust and stable.
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