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WAVE EQUATION AND CAUSALITY VIOLATION

ALAIN BACHELOT

I. INTRODUCTION

The theory of the linear waves equations on globally hyperbolic manifolds has a long history since M.
Riesz and J. Hadamard. It is impossible to cite all the important authors in the area, but we mention
the fundamental works related to our study: the Cauchy problem investigated by J. Leray [26] and Y.
Choquet-Bruhat [6] (see e.g. the excellent monograph [11] by F.G. Friedlander), the scattering theory for a
compactly supported perturbation by P. Lax and R. Phillips [25], the microlocal analysis of the solutions by
L. Hérmander [19] and J-M. Bony [4].

In opposite there are few works on the global hyperbolic problems on the non globally hyperbolic space-
times. Nevertheless the global hyperbolicity is an extremely strong hypothesis, which is not satisfied by a lot
of solutions of the (in)homogeneous Einstein equations. The origin of the loss of global hyperbolicity can be a
non trivial topology, an elementary example is S} x R3 endowed with the Minkowski metric. Other examples
are the lorentzian wormbholes [12], [36], but since they lead to violations of the local energy conditions, these
models are somewhat exotic. A deeper raison is linked with the non linearity of the Einstein equations that
can create some singularities of curvature, and also some closed time-like geodesics. In particular, the viola-
tion of the causality can be due to a fast rotation of the space-time that tilts over the light cones so strongly
that some closed causal curves appear. This phenomenon is present in several important Einstein manifolds:
the Van Stockum space-time [33], the Godel universe [15], the Kerr black-hole (third Boyer-Lindquist block
and fast Kerr) [24], the spinning cosmic string [9]. These lorentzian manifolds belong to a wide range of
stationnary, axisymmetric spacetimes that are described by the Papapetrou metric [29]

Gupdztdz’ = A(r, 2) [dt — C(r,2)dg]” — [r2d¢® + B(r,2) (dr* +dz*)], 0< A,B, 0<C,

Alr,2) (L1)

on some 3D+1 manifold M.

Our model consists by choosing M = R*, A = B = 1, and for simplicity we assume that C is compactly
supported. When we allow that C(r,z) > r (resp. C(r,z) = r) for some (r, z), some closed time-like (resp.
null) curves appear and this spacetime has the same properties that the previous Einstein manifolds of point
of view of the causality. We investigate the wave equation

2
| det g |_% Oy (| det g |% g"*”@,,) u= (1 - S_z) Ofu — Ayu — 27%&&/,1; =0. (1.2)

We also consider the zero-order perturbation of the D’Alembertian by a potential, for instance the conformally
invariant wave equation. Obviously the study of the solutions is difficult because of the presence of closed
timelike/null curves: there exists no global Cauchy hypersurface. We can see how much intricated is the
situation by formally expanding a solution of (I.2) in Fourier series with respect to ¢:

u(t, o, 2) = Z r_%um(t,r,z)eim“’.
MEL

Then u,, is solution of a changing type equation:
2

C? . C
(1 - r_2) Ofum — (02 + 02) um — 2zmT—26tum + %um =0,

which is hyperbolic on {C' < r}, elliptic on T := {C' > r}, and of Schrédinger type on ¥ := {C =r}. In
particular, My, := {t = to} x R? is not a Cauchy hypersurface for (I.2) when ¥ is not empty. Another crucial
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point is that since 9; is a Killing vector field, there exists a conserved current for the sufficiently smooth
solutions of (1.2):

E(u) := 1/R3 (1 — C—2> | Qpu(t,z) | + | Vu(t,z) |? da.

2 r2
But this energy is not a positive form when the manifold is not chronological (T # ().
II. GEOMETRICAL FRAMEWORK
We consider the topologically trivial manifold
M = R0 1 g 4oy = R X RS (I1.1)
endowed with a lorentzian metric g which is equal to the Minkowski metric outside a torus
R x {(2%,2%,2%);0 <7 <2’ P+ | 2% P<rd, 2 <2® <24 }.
We choose a particular case of the Papapetrou metric:
Gupdatda” = dt* — [r? = C2(r,2)] dp® — 2C(r, z)dtdp — dr® — d2?, (I1.2)
where we have used the cylindrical coordinates (¢, ¢, r, z) € R x [0, 2r[x[0, 0co[xR given by
' =rcosy, 2* =rsingp, 2° = 2. (I1.3)
We assume that C' satisfies
0<CO(r,2), CeC*(R?), (r,z)¢[r_,ry]x[z_,24]=C(r,z) =0, (I1.4)
and our geometrical framework is given by (II.1), (I1.2), (IL.4).

We note that ¢ is a timelike coordinate and (M, g) is naturally time oriented by the continuous, nowhere
vanishing, timelike (and Killing) vector field d;. Moreover r and z are spacelike coordinates. The interesting
fact is that the nature of the Killing vector field J, is ambiguous: the crucial point is that ¢ is a timelike
coordinate when C' > r, thus we introduce

T:=R xTo, To:=85"x{(r,2); C(r,z) >0}, (I1.5)

T:=R xTo, To:=8'x{(r,2); C(r,2) >r}, (I1.6)

Y i=R x g, Zp:=58"x{(r,2); C(r,z)=r>0}. (I1.7)

We shall need the hypersurfaces
My = {t} x R®. (IL.8)
Its causal structure is complex. Since its normal is d¢, the nature of M; is locally given by the sign of
C2
t_
g = 1- 7"_27

hence M; N (R* \ (T U X)) is spacelike, M; N Y is null, and M; N'T is timelike.

We shall be mainly concerned by the case where ¥ is not empty. In this situation the causality is violated
in a severe way: given mg = (to, ®o0, 70, 20), the path

T € R+— m(7) = (to, o — 7,70, 20) € M, (I1.9)

is a future directed closed null curve if mg € ¥, and a future directed closed timelike curve if mg € T since:

dm dm\ 5 dm 0\ _
g(dT, dr) = C*(ro, 20) — 1{, g<d776t> = 2C(ro, 20) > 0.

More precisely, the causal structure of M is described by the following:

Proposition I1.1. Let (M, g) be the lorentzian manifold defined by (II.1), (IL.2), (IL.4).
(1) If S =0, (M,g) is globally hyperbolic: M; is a Cauchy hypersurface for any t € R.
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(2) f T=0 and & # 0, (M,g) is chronological but non causal: there exists no closed timelike curve,
but there exists a closed null geodesic.

(3) If T # 0, (M,g) is totally vicious i.e. given mg,m1 € M, there exists a timelike future-pointing
curve from mg to my.

The previous proposition explains why, in the physical litterature (see e.g. [14], [36]), T and ¥ are
respectively called, time machine, and wvelocity-of-light surface. This last term is somewhat misleading
since (M \ T) C X, but it can happen that 9(M \ T) # T and X is not necessarily a hypersurface.
If there exists no (rg,zo) satisfying (II.11), the theorem of implicit functions immediately assures that
¥ is a C2-hypersurface that is timelike because its normal N = (9,C — 1)dr + 8,Cdz is spacelike since
g*' Ny, = —(6;,C —1)? — (8,0)* < 0. Moreover, this is a sufficient and necessary condition on C for a
geometrical property of non-trapping type:

Proposition I1.2. Let m € C? (R,; M) be a path. Then the following assertions are equivalent:

(i) m is a null geodesic and for some T > 0:
m(R) C [=T, +T]¢ x o, (I1.10)
(i) there exists (to, po,70,20), A € R*, such that:

{ C(’f‘o,zo):’f‘0>0, 8»,-0(7‘0,20):1, azC(’l“o,Zo):O,

II.11
m(7) = (to, o + AT, 70, 20) - ( )

We say that X is Non-Confining if there exists no null geodesic included in {to} x Xo for some tg.
Following the previous result, a necessary and sufficient condition is

C(To, Zo) =70 > 0= (&«C(To, Zo), 820(7‘0, ZO)) # (1, 0), (II.12)
and in this case ¥ is a C? timelike hypersurface.
III. THE WAVE EQUATION
The D’Alembertian on a Lorentzian manifold (M, g) is defined by

0, :=| detg |~} 9, (| detg |* g0, ).

For the space-time given by (I1.1), (IL.2), we obtain:
Cc? (o

O, = (1 - T—2> 0 — A, — 250:9,, (IIL.1)

with
=l P+ 2?2, Api=02 + 0% +0%=02+02+ r_28§ +r710,, 0y, =2'0,2 — 220,1.

More generally we consider the scalar perturbations of the massless wave equation, compactly supported in
z, invariant with respect to the both Killing vector fields 0, 0,:

L:=0,+7V, (I11.2)
where
VeCRE;R), 9,V =0. (I11.3)
These assumptions are fulfilled in the important case of the conformally invariant wave equation for which:
V= éRQ’ (I11.4)
where Ry is the scalar curvature of (M, g). We use Ry > 0 be such that
Ry <|z|= C(r,z) =V(z) =0. (ITIL.5)

We know that the D’Alembertian on a lorentzian curved space-time is strictly hyperbolic in a local sense
(see e.g. [11]). The global hyperbolicity is more delicate. We denote

Py(m, §) := g""(m)€u&y, meM, £e€TyM, (TI1.6)
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the principal symbol of L.

Proposition III.1. (1) Let a be in R. Then, Pa(m,.) is (strictly) hyperbolic with respect to the covector
dt + ady iff a satisfies:

—C(m) —r<a<r—C(m). (IIL.7)

(2) If & # 0, there does not exist F € C*(M;R) such that L is hyperbolic with respect to the level
surfaces of F.

The previous result implies in particular that in the interesting case where T # 0, the initial value problem
for L with data specified on M, = {to} x R® is not well posed. (IIL.7) shows that the failure of the global
hyperbolicity is due to the very fast rotation of the torus. Nevertheless, since 0; is a Killing vector field, it
will be interesting to investigate the solutions of Lu = 0 as some distributions on Ry, valued in some spaces
of distributions on R3. In order to choose the functional framework, it is useful to note that since the time
translation leaves the wave equation invariant, the Noether’s theorem assures the existence of a conserved
current. We formally obtain the conserved energy

E(u;t) := %/Rs (1 - 0—2) | Ou(t,z) |2 + | Vu(t,z) | +V () | u(t,z) |* dz. (ITL.8)

r2
Therefore it is natural to look for the solutions of
Lu=0, ue leoc (Rt; Wl(Rf;)) , (111.9)

where W!(R3) is the Beppo-Levi space defined as the completion of C§°(R2) with respect to the norm:
1= [ 195) P do, V= (021,0,2.0.). (ITL.10)
R3

We recall the L2-type estimate:

1 .
W) € LA(RE) := L2 (JR ﬁdac) U F U< KIS e (IIL11)

+ |z

The choice of the regularity of d;u is less clear when M is not globally hyperbolic since (1 — %2—) is negative
on Ty and the energy is not a positive form. We introduce the space:

2
LEZ(R3) =L (Rg, |1— % | dac) , (I11.12)
and we investigate the solutions u of (II1.9) satisfying:

dyu € LY, (Ry; LA(R?)) . (IT1.13)

With this functional framework, we define the local energy by

1 C? .
Er(u;t) := = 1— =) | Qeult,z) |? Vu(t,z) |2 +V (x) | u(t,z) |? d.
wsty =5 [ (1= 55) 10wt P4 Tute ) P V) Lt | -

Lemma IIL.2. Given u,v satisfying (I11.9) and (II1.18), we have for R > Rg, and almost all t,s € R:

ERr(u,t) < Egyji—s/(u,s), Ex(u,t) = Ex(u,s), (IT1.15)

When u,v € C° (Ry; WHRE)), Opu, 00 € C° (Re; LE(RS)), (IIL.15) is satisfied for any s,t € R, and the
conserved quantity FE(u) := Ex(u,t) is the total energy of u. If T is not empty, this quadratic form is not
definite positive.

We could only consider solutions of (II1.9) such that dyu € L2 (Ry; LZ(R2)), but if Z¢ is non-confining,

loc
we prove that O;u is much more regular by using the results of J-M. Bony [4] :
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Theorem I11.3. We assume that Xo is Non-Confining. Let u be such that
u€ L, (R;; WHRE)), Lue L}, (Ry; L*(R3)). (IT1.16)

loc

Then we have:

dyu € L, (Ry; L2(R2)) . (IT1.17)

The previous result allows define the trace of v and du on M;. We refer to [27] for the definitions and
properties of the usual Sobolev spaces H?, H{.

Proposition IT1.4. We assume that ¢ is Non-Confining. Let u be such that
ue L, (Ry; WHRE)), Lue L}, (Ry; L*(R2)).

loc
Then we have:

I (&;H%(Rg)) : (1 - g) Bdyu € C° (Rt;H*%(lRi)) , dyu e C%(Re; H N(To)) - (L15)

Thanks to the result of continuity stated in Proposition I11.4, we may investigate the uniqueness of a pos-
sible solution of Lu = 0 for data specified on My,. First we prove that v = 0 on M when u = (C' —7)0u =0
on My,. This result is neither a consequence of the uniqueness theorem for the strictly hyperbolic operators
([19], Theorem 23.2.7) because the level surfaces M; are not non-characteristic since P»(m,dt) = 0 on X, nor
a direct application of the conservation of the energy since E(u) is not definite positive.

Moreover, when M is totally vicious, i.e. T # (), and the Non-Confining Condition is fullfiled, we would
like that v = 0 on M when u = 0 on T. Unfortunately, although ¥ is non-characteristic, we cannot use
the classical results of unique continuation: on the one hand, 0 is a double real root of Pz(m,dt + 7N) =0
for m € ¥, N = (8,C(m) — 1)dr + 9,C(m)dz, hence we cannot apply the Calderon Theorem ([19], theorem
28.1.8). On the other hand, we have for m € X:

{P2,{P5,C —r}}(m,dt) = —4 (] 8,C(m) —1|* + | 8,C(m) |*) <0,

hence ¥ is nowhere strongly pseudo-convex, and we can no more use the uniqueness theorems for second
order operators of real principal type due to N. Lerner and L. Robbiano (see [19], Theorem 28.4.3) to deduce
that v = 0 on M, from v = 0 on T. This leads to make some assumption of analyticity on C and V near
Yo, in order to apply the Holmgren Theorem.

Theorem IIL.5. We assume that Yo is Non-Confining and To # 0. Let u be satisfying (II.9) and one of
the following conditions for some to € R:

(1) u=(1-£)0u=0 on M.
(2) u=0wu =0 on {to} x To and V and C are real analytic in a neighborhood of .
Then

u=0 on M. (IT1.19)

We shall see in Part 5 another uniqueness result for the incoming solutions.

A key ingredient is the following result involving the Aronszajn-Cordes theorem :
Lemma IT1.6. We assume that Xg is Non-Confining. Let u satisfying (II1.9) and such that for some to € R:
u=0u=0 on {to} x To. (II1.20)
Then
u=0 on T. (I11.21)
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The sequel of this work deals with the problem of the existence of such solutions, that is not obvious when
the manifold is not causal. We introduce the vector space

E={uelC (R;W'(RS)); Lu=0, dueC’(R;;LL(RE))}, (IT1.22)
endowed with the indefinite form E(u) given by (II11.8) and the space of the admissible Cauchy data:
H={(f,9) e W'(R}) x LE(R); Fu€ &, u(0)=(f,9)}, (II1.23)

where for v € C' (Ry; D'(R2)), we put

v = < 81)1) ) (IT1.24)

A priori, when T # (), H is not an Hilbert space for the norm of W1 x L%. The previous Theorem assures
that the family of maps

U(t): u(0) € H—> u(t) € H. (I11.25)
is a strongly continuous group of linear operators on H. In the following parts we construct global solutions
uw with E(u) = 0 or E(u) > 0. We let open the problem of the existence of global solution with negative
energy.

IV. THE RESONANT STATES

In this section, we investigate the global solutions u € H} (M) by separation of the variable ¢:

u(t, z) = eMo(z), (Iv.1)
with A € C and v is a distribution on R3. Then w is solution of
Lu=0 in M, (Iv.2)

iff v € L2 (R2?) is solution of the homogeneous reduced wave equation:

loc
20\ 5 ( 1 Cc?

_ 3
Av+r—26¢v—)\ ,r—2)’l)—V’U—0 on R. (Iv.3)

By the standard result of elliptic regularity, v € H (R?®) and v € C*™ for | z | large enough, since C and
V are continuous and compactly supported. (IV.3) is similar to the acoustic wave equation in an inhomo-
geneous medium (see e.g. [7], [21], [31], [35]); the crucial difference is that 1 — r~2C? that plaies the role of
the refractive index, is null on ¥y and negative in Ty.

We start by proving a result of Rellich type, stating that there exists no ¢t-periodic, non constant, solution
of Lu = 0 satisfying some natural constraint at the space infinity.

Lemma IV.1. Let v be a solution of (IV.3) for \ € iR*, satisfying one of the following condition:

ve L*(R¥) UWHR?), (IV.4)
Xz
—.Vv—i-/\v:O( ), T |—= oo; V.5
o] EAR (V)
T p— A 0( ! ) Iz |> (IV.6)
——Vv— = — ), |z 00; .
|z | | 2 [2

Then v =0.

For A = 0 the result is well known: for non negative potential V, the conclusion of the Lemma is valid; for
general potential V', since the form v — [V | v |? is compact on H}, (R?*), the space of solutions of (IV.3)
with A =0 is of finite dimension.

Lemma IV.1 shows that we have to look for the non trivial solutions of the homogeneous reduced wave
equation, for A € C\ {R. We adapt at our problem the concept of outgoing (resp. incoming) solution by
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Lax-Phillips [25]. Given A € C, f € &', the space of the compactly supported distributions, a solution v;\r(_)

of

2C\ Cc?

AU+T—20¢1}—)\2 (1—T—2)U—Vv=f on R, (Iv.7)

is said to be A-outgoing (resp. A-incoming) if

_ _ 20\ _ Cc? 4 _
0 =t [1- 220,10 -0 Gt vt ). av
where
—(H)Alz|

)y o & V.9

It is well known that in the case A € iR, the Ad-outgoing (resp. A-incoming) condition is equivalent to the
Sommerfeld radiation condition (IV.5) (resp. (IV.6) A complex number \ is an outgoing resonance (resp.
incoming resonance), if there exists a non null A\-outgoing (resp. A-incoming) solution v;‘r(_) of (IV.3), called
resonant state. We remark that when a resonant state vy has a finite energy, i.e. vy € H'(R?), the total

energy (IIL.8) of the time dependant solution uy(t, ) = e*wvy(z) is zero:

1 Cc?
E(uy) = iem(’\)t/]Rs | A2 (1 - r_2) [va >+ | Voa |2 +V | va |? dz = 0. (IV.10)

We denote R1(~) the set of the outgoing (incoming) resonances. Because C' and V' are real axisymmetric,
and since we may take vy (z!, —22,2) = v_, (2!, 2%, 2), it is easy to see that:

AMERT <= N eRT, (IV.11)
MERY <= —-AeR™. (IV.12)
Hence we shall consider only the set of the outgoing resonances, simply called ”resonances”, and we omit

the superscript +: R := RT, vy := v}.

We summarize the properties of the set of the resonances:

Theorem IV.2. R is a discrete subset of C, and we have:

RN)R* = §; (IV.13)

AER, 0<R(\) = vy € H*(R®); (IV.14)
To=0= Card{\ € R; 0 <R(\)} < o0; (IV.15)
To=0, 0<V = {AeR; 0< RN} =0; (IV.16)
To#0, A€ RN)0,00[=> dpvx = 0; (IV.17)

Ty # 0 = Card(RN]0, oo[) = oco. (IV.18)

We know that for the scattering by obstacle there exists no real resonance, and for the scattering by non
positive potential, or metric perturbation, or Schwarzschild black-hole, there exists only a finite set of real
resonances with finite energy (see e.g. [2], [25]). (IV.15) and (IV.16) show that this remains true even if
there is a closed null geodesic (Z¢ # @) but no closed timelike curve (Tg = (). The main novelty, (IV.18),
due to the existence of a closed timelike curve, is that this set is infinite. This last result can be physically
interpreted as follows: in the framework of the studies of the stability of the manifolds of the General Rela-
tivity, the existence of an infinite set of resonant states with finite energy means that we cannot prove the
possible stability of the metric (I1.2) by a method of perturbation (see e.g. the works of Y. Choquet-Bruhat,
A. Fischer, J. Marsden); hence we can suspect that the manifold is actually nonlinearly instable in a suitable
set of solutions of inhomogeneous Einstein equations. This agrees with the ”conjecture of chronological
protection” by S. Hawking [17], that states that any universe with closed timelike curve is instable.
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V. SCATTERING STATES

When T is not empty, the manifold is totally vicious, hence there exists no Cauchy hypersurface. Never-
theless the global Cauchy problem is well posed for regular data specified at the past null infinity, and these
solutions are asymptotically free at the future null infinity (Scattering States). Furthermore, the Scattering
Operator S is well defined for any free wave with finite energy, but, unlike the usual situations, the wave
operators are not causal. As regards the mathematical tools, we keep the features of the scattering theory,
that involve neither the positivity of the energy, nor the existence of a unitary group: we use the generalised
eigenfunctions method.

We start with a uniqueness result for the solutions with some given asymptotic behaviour. We recall some
basic notations for the wave equation on the Minkowski space-time:

Loug := 82up — Ayup =0, (t,2) € R x R®. (V.1)
The Cauchy problem is solved in D'(R3) by the group Up(t):
Uo(t)uo(0) = ug(?). (V.2)

We introduce: the spaces associated with the finite energy waves,

£o = {uo € C° (R; W (%)) ; Louo =0, Byuo € C° (Ry; L*(R%))}, Ho = W'(RS) x L*(RY),

(V.3)
which are Hilbert spaces for the energy norm
1
Il wo [I2, =1 uo(?) [I3,:= §/R3 | Qeuo(t,z) |* + | Vuo(t,z) [* de, (V.4)
and Uy(t) is a strongly continuous unitary group on Hy.
Theorem V.1. Let u be in £. We assume that one of the both following conditions is fullfiled:
(1)
u € Ll (Rt;L%oc(Ri)) ) (V5)
[| u(t) ||W1><ch—> 0, t—> —o0. (V.6)
(2) T # 0, and there exist a,c, R > 0, such that
| w(t) [lwr < ce?lt, (V.7)
|z |< —t— R =>u(t,z) =0. (V.8)
Then
u=0 on M. (V.9)

We make some remarks. 1) The global constraint (V.5) is usefull when T # (): the outgoing resonant
states with finite energy satisfy (V.6) but are exponentially increasing as t — +o00. 2) It is known that when
T = () and 0 < V there exists non null solutions satisfying (V.7) and (V.8). 3) We deduce from Lemma IT1.6
that (V.7) is a consequence of (V.8) when ¥, is Non Confining.

We now return to the problem of global solutions by constructing Wave Operators. We denote £5° the
space of the regular wave packets that are the smooth solutions wug of (V.1) such that

(0, &) = / e~ 8yo(0,z)dz, 8400(0, &) = / e~ Bue(0, z)dx € C5° (RE \ {0}) . v .10)
.10

Theorem V.2. Given uy € E§°, there exists a unique u € & such that dyu € C° (Ry; L*(R3)) and satisfying
(V.5) and

|| u(t) —ug (¢) ||po— 0, t = —o0. (V.11)
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Moreover there ezists a unique ug € & such that:

| u(t) — ug (t) llo— 0, t — 400, (V.12)

and we have:
| ug 12,= B(w) =[l ug |17, (V.13)
ug € E6°. (V.14)

This Theorem allows to introduce the Wave Operators
W~ iuy —u, WHiud — u. (V.15)
To make the link between these both operators, we use the time reverse operator
R: u(t, ', 2%, 2) — (Ru)(t,z', 2%, 2) = u(—t, ', —2?, 2). (V.16)
Since R(Lu) = L(Ru), we have
W+ =RW~™R. (V.17)

These wave operators are defined on £§°, but when the chronology is violated, T # 0, we do know to
characterize neither their ranges, nor the possible continuity property. Furthermore, they are no causal in
the usual sense, since Theorem V.1 shows that if u = W™ u, exists for some free wave u, € &y satisfying
the initially incoming condition (V.8), and u = ug for ¢t << 0, then u = uy = 0.

We now consider the Scattering Operator

S:ouy — ud. (V.18)
The previous Theorem assures that S is an isometry from £§° onto £§°, and by (V.17) we have
S~! = RSR. (V.19)

Therefore S can be extended by continuity and density, into an unitary operator on &, denoted S again.
To investigate this operator, we recall two important tools (see [7], [25],[30]): the translation representation
for the free wave equation is the map

up € & — f* e L2 (Ry x S2,dsdw) , s ,w) = — \t1|im topuo(t,x = (t + s)w) in L, (Ry x S2,dsdw) ,
— 00
(V.20)

that is an isometry from & onto L2 (]RS X Sg,dsdw); the spectral representation is the isometry ug — f
from & onto L* (R, x S2,dkdw) defined by :

flk,w) = \/%_ﬂ/eiksfﬁ(s,w)ds. (V.21)
We put
S: ug (0) — ug (0). (V.22)

Then S is an isometry from Hg onto Hg, and because of the invariance of the wave equation Lu = 0 by the
time translation, we have for any ¢t € R:

Uo(t)S = SUp(t). (V.23)
With obvious notations, we can also represent the scattering operator by putting:
Sttt =1t Sf=Fi. (V.24)

Since S commutes with the free group Up(t), S* commutes with the s-translation. Then S is represented
as a multiplicative operator-valued function S(k) on L%(S2). We shall state in Proposition V.4 that we can
represent S(k) by using the distorded plane waves as well as for the usual globally hyperbolic case.

We start by constructing global solutions by using the distorded plane waves ®(t,z;k,w) :
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Lemma V.3. For allk € C, ik ¢ R, w € S?, there exists a unique ik-outgoing function ¥(x;k,w)that is a
H2 (R3)-valued analytic function on (Cy \ iR) x S2, such that

loc\™z
O(t,z; k,w) := eiklt—ow) 4 e* (2 k, w) (V.25)
is solution of L® = 0.

For any f_ € C§° (R x S2), the function

u(t, z) = % /R /S (b3 ) ()b (V.26)

satisfies
ueC® (R;WHRE)), due C®(R; L*(R2)), Lu=0. (v.27)

Proposition V.4. There erists a function S(w', k,w) analytic on S2, x (Cy, \ iR) x S2 such that

w!

k) = C g (k) +0 (—') | = oo, (v.28)
|| |z | |z |?
x . e_ik‘w‘ ~ x e—ik|w|
m.vz‘ll(x;k,w) = —zk—l Py S <m,k,w) + 0 <—| P ) , |z |— oo. (V.29)

For any f_ € L? (Rk X Sg), we have

(5 f,) (k,w) = f_(k,w) — % 5 S (w, ky ') o (k,w')dw'. (V.30)

When the manifold is globally hyperbolic, i.e. T = ¥ = (), we can apply the general results of the ”black
box” scattering (see e.g. [37]), that assure that k € C +— S(k) € £ (L?(S?)) defined by (V.30) is meromorphic
on C and the poles essentially correspond to the resonances. More precisely, the multiplicity of a pole k of
S is equal to the difference between the multiplicities of the possible resonances ik and —ik. We state a less
precise result when the metric is not causal.

Theorem V.5. The £ (L*(S?)) valued scattering matriz S(k) is meromorphic on Cy. If ko € C is a pole,
then iky € R. Conversely a complex number kg satisfying

R(iko) > 0, iko € R, —iko ¢ R, (V.31)
is a pole of S(k).

When the manifold is chronological, T = @, but non causal, ¥ # (), and if 0 < V, then there exists no
resonance with positive real part (Theorem IV.2, (IV.16)). In this case, the Foures-Segal Theorem [10] implies
that the scattering operator S is causal. When the manifold is non chronological, T # (), we have stated in
Theorem IV.2, (IV.18), that there exists infinitely many resonances with positive part. We conjecture that
some resonance satisfies (V.31) and the scattering operator is not causal.

VI. SCATTERING BY A CAUSALITY VIOLATION IN A CHRONOLOGICAL SPACE-TIME

In this part we prove the completeness of the wave operators in the case where the manifold is chronological
but non globally hyperbolic:

T = ¢, (VL1)
S #0. (V1.2)

The case of the globally hyperbolic space-time, T = @), ¥ = (), has been treated by D. Héfner [16]. Thus we
assume that:

sup% =1 (V1.3)
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In order to use some energy estimates, we impose the positivity of the total energy:
0V (V1.4)

First we consider the Cauchy problem with data on M;,. We show that this problem is well posed despite
the existence of closed null geodesics. That is not entirely surprising since My, is weakly spacelike according to
the terminology of L. Hérmander who has studied the characteristic Cauchy problem on a globally hyperbolic
manifold [20]. Nevertheless, because of the violation of the causality, we have to be carefull to define the set
of the possible initial data.

We remark that Xy is necessarily confining, hence we cannot invoke Theorem II1.5 to assure the uniqueness.
But since the conserved energy E(u) is now positive, £, H defined by (II1.22), (II1.23), are Hilbert spaces,
and u + u(0) is an isometry from & onto H, for the norms

I = By t) =1 0(0) 3= 5 1| Bu(0) [ +3 11 w(0) I (VL5)

We have used the equivalent norm on W(R2):
17 1= [ 1V£@) P +V(0) | ) P do.

Since U (t) given by (III.25) is a strongly continuous unitary group U(t) on H, the Stone theorem assures
that there exists a self-adjoint operator A on H, with dense domain D(A), such that

U(t) = e*4.
It is easy to characterize D(A) in terms of more regular solutions:
D(A) = {u(0); ue&'}, ' :={ue& Quecl}. (V1.6)

To state that the space of the admissible Cauchy data is large, we introduce the set
D:= {(f,g) e WHRS) x HY(R3); Afe L*(R®), Af +2f—28¢g —Vf =0 on a neighborhood Vg of 20} ,
VE7)
and the Beppo-Levi space Wy (R2 \ %) as completion of C§° (R3 \ o) for the norm (IIL.10).
Theorem VI.1. We assume that (VI.1) and (VI.4) are fullfiled. Then we have:

C5° (RS \ Zo) x C5° (RS \ Zo) C D(4), (VLS)
Wo (B \ o) x Lg (RS) C H, (VL9)
D CH. (VI.10)
Moreover if the Lebesgue measure of Yo is zero, then
D=H=W4R3) x LL(R3). (VI.11)

We now return to the scattering theory. We have seen that the scattering operator S is an isometry from
&o onto &. Nevertheless, when the space time is totally vicious (T # 0)), we can define the wave operators
W+(=) only on the dense set of the regular wave packets, &§°, and the range of these operators is not known.
Taking advantage of the fact that the conserved energy is positive when T = ), we could extend by continuity
the wave operators (V.15) previously defined on £§°, but in order to be more concrete, we prefer to directely
construct them, by replacing W' x L? by W' x L2, in the control of the asymptotic behaviour, and using a
time-dependent method. Despite the violation of the causality (Xo # 0), we are able to develop a strategy
¢ la Lax-Phillips [25] because the chronology is respected, and we get

RanW* =RanW™ = €. (VI.12)
We need the R-outgoing (R-incoming) subspaces:
D) = {F = (f,9) € Ho; | |<+(=)t+R=Us(t)F =0}, 0<R. (VI.13)
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Proposition VI.2. We assume that (VI.1) and (VI.4) are fullfiled. Given uar(_) € &, there exists a unique
ut (=) € € such that:

[ ut O (@) = ud @) lwixzz, = 0, t = +(=)oo. (VL.14)
Moreover we have:
1wt fle=l ug ™ e, - (VL15)

Therefore we have proved that the Wave Operators
wH) . ug_(f) — ) (VI.16)

extend the wave operators (V.15) defined only on £§°, and are isometries from & to £. The main result of
this part states these operators are onto.

Theorem VI.3. We assume that (VI.1) and (VI.4}) are fullfiled. Then for all u € £, there exists a unique
uar(_) € & such that:

lu(t) = ug () lwrxzz, = 0, t = +(=)oc. (VL.17)
Moreover we have:
o lle= ug ™ Nl - (VL18)
The crucial point is the decay of the local energy that we establish by using the RAGE theorem.
Lemma VI.4. Let u € £. Then for all R > Ry we have:

T
lim % / Er(u,Ddt = 0. (VL19)
0

T—~+oco

UrerU () DF; = UerU(t) Dy = H. (VI.20)

We achieve this study by some remarks on the Scattering Operator S. We have shown that even if the
chronology is violated (T # ), the scattering operator is a well defined isometry on &, but in this case,
its meaning is somewhat mysterious since we can construct the wave operators only on £§°. When the
chronology is not violated, we deduce from the previous theorem that (WJF)71 is well defined from &£ to &,
and with Proposition VI.2 we conclude that the Scattering Operator is actually defined by

Si= (W) W (VI.21)

Moreover since D;g and Dp are orthogonal, the scattering operator S is causal in the usual sense (e.g. [25]),
ie.

(|z|<—t=>uyt,2z) =0) = (|z|< —t=uf(t,z) =0),
although the manifold M is non causal (it would be preferable to say S is chronological, since this is this
property of M that assures the so called causality of S). This is also a consequence of the Theorem of
Foures, Segal [10], and of the spectral representation of S, Proposition V.4, since we have stated in Theorem
IV.2 (IV.16) that there exists no resonance with positive real part.

It is without saying that this work is only a first incursion in the mathematically widely unexplored domain
of the field equations on the non globally hyperbolic manifolds (for a rather significant bibliography of the
physical litterature see e.g. [9], [11], [13], [14], [17], [23], [34], [36]). We have not dealed with many important
questions such that: the asymptotic repartition of the resonances; the singularities of the scattering kernel;
the existence of a "trace formula” making a link between some geometric quantities (e.g. the lenght of the
closed null geodesics), and the spectral numbers; the Strichartz type estimates, etc. Last but not least, the
field of the nonlinear wave equations on a non causal space-time is terra incognita.
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