% BACHELOT

Scattering of electromagnetic field by
De Sitter—-Schwarzschild black hole

- - Maxwell Equations in the De Sitter - Schwarzschild Universe

“We investigate the electromagnetic field outside a spherical Black-Hole with mass m in

- zsymptotic De Sitter spacetime with cosmological constant A > 0, described by the De Sitter -
~~warzschild metric

X ds?= a2 dt? - 0 2dr2 - r2(go2 4 gin2 6 do?)

>

“=ere lapse function « is given by

= a=(1-2mri-ar/3)Y2

We assume m and A satisfy :

3 9Am3<1

=0 the equation " o = 0 " admits two positive real roots r,,r,,, 0< r,< r., .The static De
~ iter - Schwarzschild Universe is the four dimensional pseudoriemannian globally
~zerbolic manifold

« F=R,x(r<r<r, }xS?

“th metric (1).

E This metric has a fictitious singularity on the "Black Hole Horizon" F,=R,x{r=r_}x

~ and on the "Cosmological Horizon" Po=Ryx{r=r__}x $2. No radial null geodesic

- “=aches the horizons at finite time ¢ and it is convenient to introduce the tortoise coordinate
~_ defined by

- *
-
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17 there is no Black-Hole, a=(1- A r%/3 )1/2 and we find the free dynamic in the static De

space-time R, x (0<r<r_ = (3/M)M2) x 52 with spherical coordinates.

"z introduce the Hilbert space of finite redshifted energy :

# =%, ,r, [ xS2, r2drdon®,

subspace of free divergence :

#© -wex ;V, E=V, B=0),
he subspace & of fields without stationary part, i.e. orthogonal with the second space of

mology :

#=(Ue #© ;JBFdrdwz jEFdrdm=0}.

TEEOREM 1.1 - H is a sel fadjoint operator with dense domain on ¥ JZ’ (0) s
cndon ¥ .

=0 we solve the Cauchy problem for (12) by Stone's theorem.

ZEMARK : We are not concerned by a mixed problem : we do not need any boundary

~=~Zition on horizons I' which are not time like.
“We have a result of finite velocity dependence :

THEOREM 1.2 - Let'sbe U in # such that

supp Uc[ris r.< rf]sz;
then we have

i

supp e tH 1y {ri— 1] Sr*5r3+ Ith xS? .
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An important result is that there exists no time periodic non null field:

THEOREM 1.3 - The ponctual spectrum of H on ¥ isempty.

We can deduct from this result, the decay of local energy ; but we developp here a complete
scattering theory for the electromagnetic field and in particular, we find the result of Damour
[4], [5], [6] on the behaviour of fields near the Black Hole Horizon. The study of case without

cosmological term, i.e. A= 0, was treated in [1] N

IT - Wave Operators at the Black-Hole Horizon

Hamiltonian H degenerates as r — r, ,but raH(ra)_l admits a formal limit H,y

o 0 0 0
(18) my=i 1) a= 0 003,
1 0 93, 0

H, is essentially the dynamic in Rindler metric that approximates De Sitter -

Schwarzschild metric near the horizon. We introduce Hilbert spaces :

(19) #,=W,="®] E% E?, 8% B® BhHeL "R, xS2,dr, don®,

= D)

(20) #i=(W.ex, E =B =+E° 1B _+E
1 1 1 1 1 I 1

-8

-B7=0}.

The fields in Jé’;(_) have an left (right) polarization and behave like a plane wave, coming out
of the past cosmological horizon and falling into the future black-hole horizon (coming out of
the past black-hole horizon and falling into the future cosmological horizon):

(21) U] =y, ,0)=U,¢t+r, , 0.

Given a cut-off function x1€C °°(IRr ) satisfying x,(- ) =1 for ry<a,xr)=0 for r_»>
b, for some a < b , we construct an identification operator

T X, - %
by putting
-1
(22) JS1U=(ra) 21Uy -
We define classical wave operators
@3) WiUp=s-tim ™y oy i g
t—too
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the gravitational potential is exponentially decreasing as r « —> —°° , we prove easily

_2ok's method the :
THEOREM II.1- Wf X %—)Jt’ exist, are independent of x ; and [IW%II <1.

e deduct from this result, the existence of infalling fields, similar to the disappearing

‘ons in dissipative scattering :
THEOREMIL2 - If U e} satisfies

Uir,,0)=0 for r, _2c

*

“22n we have
o2 WTU1=O for r . tt2c.
To describe the field near the black-hole horizon as ¢ — +00 we define

Cie W, U=s- lim eitHlﬂIe_itHU in 12’1.

t—+o0

THEOREM I1.3 - Wy:% - JA’J{ exists, is independent of 21 and W | <L

The physical meaning of this result of completeness is the famous "impedence condition"
~ “zmour [4], [5], [6] and Znajeck [12]. More precisely the asymptotic profile of regular fields

~==sfes a dissipative condition or infalling left-polarization :

THEOREM I1.4 - Let'sbe U in ¥ such that
L =25) U= B G W s b, X §O1S.,

We note enitH U= t(E; - B[b). Then, for any seR , there exist e g ey ba n LZ(SQ) such
BRat, as

P 26 e G
. i e 2,824,
the following limits exist in L“(S*) :
27) rZEr—>er,rzBr—;br,raEe—)ee,raE‘P—)e‘o,raBe—>b9,raB¢—)b‘p.

Moreover, we have

28) e¥=_p% | e? =p® ,
29) as eF+ (sine)_1 [ae(sinee 9) + aqpe a’] =0.

27



Remark by Theorem 1.3, the set of data satisfying (25) is dense in # .

So, the Black Hole Horizon is rather similar to a dissipative membrane in euclidian space
with surface resistivity 377 ohms (impedence of vacuum): (28) is formally the impedence
condition and (29) the charge conservation law ; but we emphasize that, unlike the euclidian
case for which the dissipative condition is posed at each time and is necessary to solve the
mixed problem, impedence property (28) is a consequence of Maxwell equations satisfied at

infinity of infalling null geodesics.

I - Wave Operators at the Cosmological Horizon

Hamiltonian H degenerates again as r — r., ,but raH(ra)™' admits the formal limit
H defined by (18) .

. . o0 . .
Given a cut-off function 2,6 C (R, satisfying x,r =1 for r >d, 2,r)=0 for r_<c,

for some ¢ <d , we construct an identification operator

P Jt’l - X
by putting
(30) U =) yoU, .
We define classical wave operators
(31) Wg U1=s—tl_z;:2° eitH}’Oe—it}r{1 U, in z .

Because the gravitational potential is exponentially decreasing as r, — oo, we prove easily by
Cook's method the :

THEOREM III.1- Wi(; : ]f;—»’/é’ exist, are independent of xoand i]W%I[ <1.

We deduct from this result, the existence of outgoing fields:

THEOREM IIL2 - If U,e# satisfies
Ul(r* ,w)=0 for r.<c

then we have

e_itHWgUlzo for r tt<ec.

*
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To describe the field near the cosmological horizon as t — +c0 we define

< WoUs=s-lim sy i g

t—+oc0
THEOREMIIL3 - Wq : % — #7 exists, is independent of 2o and Wyl < 1.
Therefore the field satisfies at infinity a “Sommerfeld condition” like in the euclidian
== . More precisely the asymptotic profile of regular fields satisfies a dissipative condition

= cutgoing right-polarization :

THEOREMIIL4 - Let'sbe U in ¥ such that

A

U=Hf , flCZC,,r.[xS2°.

We note et U= t(EF - B(}). Then, for any seRR ,thereexist e’ .., b% in Lz(Sz) such

BRat. as

< ¥
-

= r—r, ,r<r,, t-r_=s,

“2e following limits exist in LZ(S 2) :

rZEr—>er,rzBr—)br,raE0—>e6,raE(”—>e"’ ,raBe —>be,raB“’ - b?.

Xoreover, we have

< e9=p% e?=—p° .
TP, | . 8 ®

< —dge +(sin6) [dg(sing e )+a¢e 1=0.

Femark by Theorem 1.3, the set of data satisfying (33) is dense in . _
So, the cosmological horizon is again rather similar to a dissipative membrane with the

~—roedence of vacuum. In fact the previous theorems are so true if there is no black hole, i.e. m =

Hence, far from the Black-Hole we can compare the electromagnetic fields with the
- utions of Maxwell’s equations in the static De Sitter space time ¥, with some cosmological
~=stant Ay > 0, discribed by :

Fo=R,x(0<p<p =@/A)"?)xS*=R,x 0<p, <oo) xS2,

[
0w

ds® = A%dt? - 472dp? - p2 (@62 +sin26 do?) |
- e the lapse function A is given by
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(40) Alp)= (1 - Agp?r3 )2
and the tortoise coordinate p, is defined by
41 Po=B/aA)* (In[B/AN+p1=In[ (/A ~p])

Maxwell’s equations in the De Sitter space time are given by :

(42) 9, Uy = -iH,U, , Vg, Eo=Vg By =0,
where
0 - {‘Baq, _f}_gaesine
Sin Sin
. 0 Vg x4 ” P e
43)H, =i , Vg xA= A3 0 -45 pA
-Vg4 xA 0 0 psing ¢ p P
; Shys Ay oph 0
p p*
(44) VyO.X=Ap_Zap (p2X5)+<psine)‘l[ae<sinexe)+a¢x<7’].

We introduce the Hilbert space of finite energy fields :

(45) ]E0=[L2([0,pH[pxSZ ,p2 dp dw))®,
and the subspace of free divergence :

(46) ‘7€0={UE]EO;V.90'E:VS’O'B:0]'

To avoid long range interaction between gravitational and electromagnetic fields , we
identify the tortoise coordinates of De Sitter and De Sitter - Schwarzschild Universes :

47 r.=p, .

Given a cut-off function B C°°(IR; ) satisfying xoo(p* )=1 for p, > d,, xoo(p’ )=0 for
p.<cg,for some O<cy<d, , we construct an identification operator

JOO:JKO—> X
by putting
48) CooUg) (r6,0)=(rea)™  p A 109(p, ) Uy (p. ,6,9) for r.20,
(49) FooUg)(r,6,0)=0 for r,<0,

where r, p, r_, p, are related by relations (5), (41) , 47).
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= Ze=fine classical wave operators

s Wi Ug=s- lim By ge oy in % .

t—too

WooUs=s- lim e™ogt ey in 2.

t—+o00

Ziven an electromagnetic field in the De Sitter space time , there exists a unique
= mptotic field in the De Sitter - Schwarzschild spacetime :

THEOREM III.5- W%O 1 # ) —>X exist, are independent of 3, and ||wgo || <1.

Lloreover , operators W%O are complete, i.e. the fields in the De Sitter - Schwarzschild space
~ == are asymtotic to a free field in the De Sitter space time :

THEOREMIIL6 - W, : #— ¥ exists, is independent of Zoo and |[Wygl < 1.

Now, we can introduce scattering operator S by putting

o
1

W Rx®g—® , W (U, Uy)=WyUy+Wg Uy,

W: xox1x#, , WU=(W,U,WyU),

A

) _ Ee, +
£) S=WW HIXEG D H XK,

[§

==d we resume the whole Scattering Theory in the following

THEOREM IIL7 - W ™ is isometric from X x ¥ onto ¥ ;W is isometric from * onto

T x¥y, S isisometric from ¥]x ¥, onto Jt’“{x]&’o.

IV - Membrane Paradigm

The Membrane Paradigm [9] states that if we are concerned only by the behaviour, far
“rom the Black-Hole, of an initially incoming field, we may approximate the Black-Hole by a
Jissipative spherical membrane of radius r,+e ,0<e,called “stretched horizon”. We

consider the mixed problem for Maxwell equations (7) in R, xJr_+¢, r,, [, x S? and we

:mpose impedence condition:

55) E°=-B% | E®=B%on I =R,x(r=r +ex52,
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It is a classical dissipative h)éperbolic problem of which the solution is given by a semigroup
V. (@) on Hilbert space ¥ =L +e, r [ Si , r2 dr da))]s .For 0 <& small enough we
define scattering operator

(56) S, Ug=s-lim gy v on s oy in %, .

t—+o0

THEOREM IV.1 - S,: X —>X exists, is independent of oo and | S =1

Now, in the De Sitter - Schwarzschild universe, the asymptotic behaviour at infinity of

an initially incoming field is described by operator S defined by

where I1, is the projector from Jf; X ¥ o onto ¥ . The following result is the mathematical
foundation of Membrane Paradigm :

THEOREM IV.2 - For any Upe? , S, Uy tends to Sogo Uy in Xy as e—0.

Of numerical analysis view point, impedence condition (55) is an absorbing boundary

condition on artificial boundary I',, so called Silver-Miiller radiation condition in euclidian

case [8]. So, Theorem IV.2 gives a method of numerical approximation, already used in [10] .

V Idea of Proofs and Concluding Remarks

We start by investigating vector wave equation in & -

(59) 37X -(Vyxa) (Vyxa)X=0

with the constraint of free divergence
(59) Vg . X=0.

We split X into radial and transverse components A°, A+, A” and we expand A°, AY A7 in

series of generalised vector spherical functions Tfn n
bl

oo 4 ¢
(60) Ao(t7 Ty 9’ (P) = EZO _Zgazn(t’ r*) To,n (g ER 0
L oo 4 + ¢ -
(61) A, r..o, ?)= ;0 Zea'l,n(z’ r*) Til,n (5 -9,6,0).

For simplicity we omit subscript £, n and now a" are solutions of scalar one dimensional
wave equation
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[
(]

2 2 2
9, a°~8r aO=~€(€+1)—a ao,
2 * r2

2 2 1/2 2
53 o a*-3] at=-e@n s ot EED)VE 5 (at) 0
* r 2 * r
- 2 2 _ 12 2
59) 0, a” -3y a”=—e@n e o=+ EED)E G (2l g0,
* r * r

1/2 =
ao+(€(€+1) (at+a

55) Br‘ —2—) )=0.
Tnerefore a°, at —a”, are solutions of scalar wave equation :
2
2 2
66 d,u—-9, u=-000+1)% yu .
. r2

= noting that the potential a®/ r?is short range type asr —r, and r — r,, we apply a Birman -
“ =20 method to prove there exist L, , u, such that

ult,r) =u(t-r) + u(t+r), t—oo,

woere ug , u, are respectively the asymptotic profiles at the cosmological horizon and at the
= =ck - hole horizon. Finaly, by using (65) we obtain the asymptotic behaviour of transverse
“:mponents.

~¢ justify the Membrane Paradigm we note ay = ay (¢,r,) the coefficients of Tsn in (60) (61),
wssociated to X = E, B, v = 0,+,—. By using Maxwell’s equations and impedence condition (55),

w= obtain boundary conditions at L Fi Ag)s

2]

7 @-3,)ay=0, t>0, r=r", X=E, B,

2
V€(€+1)—a?a"3, t>0, r=r°,
r

&

(9, - 8,‘) az =i

[

V2

o e 9
B0 = l o
E9) (0;~0,.) aBzJ_rE \/€(€+l)r—2a}’g, t>0, r=r",
70) (at—a,.)(a;w;‘.)=(a,-a,‘)(a;+a;)=o, 150, BT,
b - . A2
1) @,-9,)(al —a_—i %, ag)=0, >0, r=r",

CTE TR e ¢ °

T2) 3. -9 + - \[5 3. a%) = e
T (t_ r‘)(ClB+dB+I, ta'E)—O, t>0, r= r, ,

Ve(+1)
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We conclude that

o o o o e - " 2
(73) u e{ ay, ay, day, 9J,ay, ag + ag, ay+ ag,

V2 0 + - . 2 ”
o,ay, a.-a,_-i J,an }
Veery "2 BB Jeen ' E

+ - .
ay—ag+ i
is solution of

2
(74) du-Ru=-e@+1))%u, t>0, r,> r°,
* r

(75) ou-0d,u=0,t>0,r =r .

But (75) is a perfecty transparent condition, hence

(76) u=i|r‘>ri

where & is solution of

an afa_af‘a=-e(e+1>)§a, t>0, reR,

(78) u(0,r)=u0,r),r,>ri and u(,r)=0, r,<r ,
(79) 0, u(0,r)=03,u(0,r), r,> r; and 3, W0, r)=0,r,< rF ,
with

(80) a’r,erz oz|r‘2r5 5 Bl oy =0

Te<Ty

Then we can apply again a Birman - Kato method and prove the existence of S, . Finaly , to
establish the convergence of S, , we note that & tends exponentialy to o as e—0 .

To end we make some remarks :

We can interpret the whole Scattering Theory in terms of Characteristic Cauchy Problem
thanks to the Penrose Transform ( see [1] for A =0 ) : the fictitious singularities at the Horizons
which become from the choice of coordinates (¢, r, 6, ¢ ), can be avoid by using the Kruskal
type coordinates ; then the past and future black - hole and cosmological horizons are simply
null submanifolds of globally hyperbolic curved spacetime ; hence the fields are there
obviously well defined ; moreover the existence of wave operator W ~assures the characteristic
Cauchy problem is well posed with data on the past horizons , and the existence of W means the
fields can be extended up to the future horizons .

At last we note that our methods can be used to study the asymptotic behaviours of relativistic
massless fields in the case of a general spherical Black - Hole with a mass m > 0 and a charge
@ in a asymptotically De Sitter ( A > 0) or Minkowski (A > 0) space described by the ( De
Sitter-) Reissner- Nordstrém metric:

(82) ds? = a2 ds?

—a2qr2- r2(de2 +sin? o d¢2) 5
where lapse function « is given by

(83) a=(1—2mr'1+Q2r_2—Ar2/3)1/2.
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