A. BACHELOT

Scattering operator for Maxwell

equations outside Schwarzschild
black-hole

1. Maxwell Equations in Schwarzschild Universe

We investigate the electromagnetic field outside the spherical Black-Hole of radius ro >0,
described by Schwarzschild metric

ds® = a2 d? - o2 dr? - y2(d02 + 5in? 0 dg?), ro<r, (1

and the lapse function « is given by

o=(1- rOr‘l)Uz. 2

This metric is singular on the 'Horizon’ T = R, x {r = rpt x 52 and no radial null geodesic

reaches T at finite time 7. With Wheeler coordinate r, the equation of such geodesics is
t=:*:r*+C, r*=r+r01n(r—r0). 3

In Schwarzschild vacuum, Maxwell’s tensor F verifies the equations:
dF=0,d+«F=0, (<

where * is the Hodge operator related to metric (1). We split F into electric and magnet.:
fields measured by an observer with four-velocity u :

_ \Y - _ Y 3
EH_FH,Vu’Bu— (*F)u,vu' (5

Since we are concerned with scattering theory, we consider the Black-Hole as a perturbatios

and we choose an observer at rest by respect to the Black-Hole (Fiducial observer of [6]), ane
then

u=a‘181. (6

By putting
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‘U=(ET,E E®,B7 B, B9) = (¢ 1), @)
where
X=X?aar+X9r-1ae+X@(rsine)-la(p, X=EB,

Maxwell’s equations (4) take a familiar form

QU =-iHU, Vg-E=V¢.B=0, ®)
where
o
0 - 0 —— 9, 5in 0
rsin® @ rsin @ o SIn
0 VSx 5 &
=i , V ) 0 - =9 , 9
d'=d —st 0 % rsing @ r e ©)
o o
- 7 ae 7arr(x 0
VsX = 0r 23,2 X7) +(r sin 6)1 [ 9 sin 0x%+0,X9]. (10)

If there is no Black-Hole, o = 1 and we find the free dynamic in Minkowski space-time
with spherical coordinates. We introduce the Hilbert space of finite redshifted energy

P [L2(1r0 s Hoof x S(20, r2dr dw) 16
and the subspace of free divergence without stationary part:
H={U€ H, Vg E=Vs.B=0,[ E¥ drdw=[ B*drdw = 0}
Theorem 1.1. H isg self-adjoint operator with dense domain on # and on 7.

Then we solve the Cauchy problem for (8) by Stone’s theorem.

Remark: We are not concerned with a mixed problem: we do not need any boundary
condition on horizon T" which is not time -like.

We have a result of finite velocity dependence:
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Theorem 1.2. Let U bein 7 such that

suppUC{riSr*SrZ}sz
then we have

supp e MU {rl -1tl<r, <r2 41011 x S2.

Schwarzschild metric is trapping: all great circles of sphere with radius 3ry/2, so-called
'Photons-sphere’, are null geodesics; there exist also null geodesics asymptotic to the
Photons-sphere. Therefore singularities of field can be trapped and do not escape at infinity.
Despite this difficulty, there is no time-periodic solution in Schwarzschild universe, like the
Euclidean case with an obstacle, for which, the second space of cohomology yields non-
trivial stationary solutions:

Theorem 1.3. The point spectrum of H on # is empty.
We can deduce from this result the decay of local energy; but we develop here a complete
scattering theory for the electromagnetic field and in particular, we find the result of Damour

[3] on the behaviour of fields near the horizon. The study of the scalar case was treated by
Dimock and Kay [4] [5].

2. Wave Operators at Infinity

Schwarzschild universe is asymptotically flat and far from the Black-Hole we compare the
Hamiltonian H with the classical electromagnetic Hamiltonian Hy

0 curl
Hy=1i )

-curl 0
in Minkowski space-time with metric
ds? = d? - dp® - p2 (d82 +sin2 0 dg?), 0<p. (10)

For any choice of p = p(r), the difference H - H o is a long-range type perturbation but
because the radial null geodesics (3) are straight like their flat analogs, we avoid long-range
interaction between gravitational and electromagnetic fields by choosing

p=r,20. (11)
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“We introduce the usual finite energy Hilbert spaces
Ho={Ug =" E0ESES B, BEBOE ILAR, x S 5,1 dr, d) 19},
o= {Uy="(Ey, By € Hpy; div Ey=divBy=0}.

Civen a cut-off function x, € C°°(IR;L*) satisfying xo(r,) = 0 for 0 < r, < a, and
ifr) =1 for r_> b, for some 0 <a< b, we construct an identification operator
I: 5{04 E{byputting

IOUO=XOU0 for r*ZO, [OUO=O for r*SO.

‘We define classical wave operators without Dollard’s modification

+ ; ; ; —
WoUg=s - lim el!! fyeitHoy, in g1,

t->too

The spherical invariance of Maxwell equations - that implies a =2 decay of radial

components - and our choice (11), cancel the long-range effects and by Cook’s method we
orove the

Theorem 2.1. Wz,‘r: H o~ H exist, are independent of x,, and | W% h<1.

“We deduce from this result the existence of outgoing fields:
Theorem 2.2. If U 0 € H satisfies

Oy =0 for 0<r <+1+C
“hen we have

: +
WU =0 for r <t1+C.

3. Wave Operators near the Black-Hole

The Hamiltonian H degenerates as r - rg, but roH(ra)~! admits a formal limit H 78
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QU

H1=l N h1= L (13)

H | is essentially the dynamic in Rindler metric that approximates the Schwarzschild metric
near the horizon. We introduce Hilbert spaces :

H={U; =" ELESEL B B OB P [LXR, x S2,dr, do)16},

*

—

¥
1

D>
—_—g
—__aH

+ > 0
Hy={Ue 3 E -B{=0}.

The fields in 7/ *1"(_) have a left (right) polarization and behave like a plane wave, falling into
the future (coming out of the past) horizon

Uie His ey )¢, o) = UEi+r, m).

Given a cut-off function %€ C°°(1R,*) satisfying X1(r,) =1 for re<¢ Xxu(r) =0 for

r,>d, for some ¢ <d<0, we construct an identification operator Iy 2 3 > 3 by putting
LU =o'ty U,.
We define classical wave operators

WiUi=s- lim it/ ey in g, (14)

[ Jusdos]

Because the Schwarzschild potential is exponentially decreasing as Ty = - ®, we prove
easily by Cook’s method the -

Theorem 3.1. Wf: H f—e H exist, are independent of x; and | W? I<1.

We deduce from this result the existence of infalling fields, similar to the disappearing
solutions in dissipative scattering.

Theorem 3.2. If U, € #* sarisfies
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Ur,,w)=0 for r . 2¢c
then we have

; +
etHWIU, =0 for r,2tt+c.

4. Asymptotic Completeness
To study the asymptotic behaviour far from the Black-Hole we introduce

WoUs=s- lim e!tHobeithy in ¢ (15)

t>too

Atinfinity of Schwarzschild universe, the electromagnetic field is asymptotic to a free field
in Minkowski space-time :

Theorem 4.1. W : 9~ 74, exists, is independent of y, and| Wyl <1.
To describe the field near the horizon as - + © we define

WyU=s-lim gt rietfy in ;q (16)

{>*co

Theoremd.2. W, : 7> }[J{ exists, is independent of %, and |WI<1.

The physical meaning of this result of completeness is the famous impedence condition’ of
Damour and Znajeck [3]. More precisely the asymptotic profile of regular fields satisfies a
dissipative condition or infalling left-polarization :

Theorem 4.3. Let there exist U in H such that

Us=Hf, fe[Cy(Irg,+oolx $2) P, (17

Wenote e'H U =t (E™ .. B9®). Then, for any s € R, there exist ¢” ey B® in L2(S?) such
that, as

rorg t4r=s, (18)

the following limits exist in L%(S?):
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E"5e",BT, 0E%s ® 0E®5 %, aB®5 b9, 0B % % . (19)

Moreover, we have
B = b0 =P (20)
ase7+(sin 9)‘1[89 sin6e9)+a(pe‘5’]= 0. @2n

Remark by Theorem 1.3, the set of data satisfying (17) is dense in 4.

So, the horizon is rather similar to a dissipative membrane in Euclidean space with
surface resistance 377 ohms : (20) is formally the impedance condition and (21) the charge
conservation law; but we emphasize that, unlike the Euclidean case for which the dissipative
condition is posed at each time and is necessary to solve the mixed problem, impedance
property (20) is a consequence of Maxwell equations satisfied at infinity of infalling null
geodesics.

Now, we can introduce scattering operator S by putting
W= x 3> 9, WU, Uy = W U +WyU,,
W: 3~ Hyx 94, WU = (W, U, W,yU),

S=WW=: 9] x H- H{x .

W/' z \W
7 % 9,

> HY X Hy
S

Theorem 4.4. W~ is isometric from 1 x Hy onto H; W is isometric from H onto
H x Hy, S is isometric from 9 x 34, onto I} x 3,

We give only the idea of proof for asymptotic completeness. Since the kernel of H on
7{ is null, we may use vector potential and so we have to study the vector wave equation

RU-H=0. (22)
Thanks to the spherical invariance we can obtain a complete variables separation by using the
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generalized vector spherical harmonics of Gel'Fand and Sapiro. Roughly speaking the
problem is now reduced to the study of the scalar one-dimensional wave equation

at2v~a% v=02r. (23)

The crucial point is that, thanks to our choice of Wheeler coordinate, the potential a?r2 in
23) is a short-range type and we apply classical results of Birman and Kato. In a suitable
sense, solution v of (23) satisfies

v, r)~v(r, - D+v(r,+1), t>+00. 24)

Vo and v, are respectively the asymptotic profiles of parts of the field, respectively, outgoing
at infinity, infalling into the Black-Hole. To get the asymptotic fields and to prove the
existence of W, W, S, we apply the two Hilbert spaces scattering theory.

5. Membrane Paradigm

The Membrane Paradigm [6] states that if we are concerned only with the behaviour, far from
the Black-Hole, of an initially incoming field, we may approximate the Black-Hole by a
dissipative spherical membrane of radius ro+¢&, 0<e, called 'stretched horizon’.

We consider the mixed problem for Maxwell equations (8) in ] ro+ €+ [xS? and on
stretched horizon T, = R (x{r=ro+elx S? which is time-like, we impose impedence
condition

E®=_-B® E®-pO, (25)
It is aclassical dissipative hyperbolic problem of which the solution is given by a semigroup
Ve(t) onHilbertspace 7 = { L2(1ry+e,+ o[ ,x S, 2 dr dw) 15, For O<e<a we define

the scattering operator

SeUp=s~1lim !0 v 2 1, ¢ M0 U, in ;{)
t>+o00

Theorem 5.1. S, : #Hy— 7, exists, is independent of X and I1S1<1.

Now, in Schwarzschild universe, the asymptotic behaviour at infinity of an initially
incoming field is described by operator Soo defined by

VUO € %, SOO UO = HO S(O, U()) s (26)
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where I1;, is the projector from %/ ;r x Hy onto #,. The following result is the mathematical
foundation of Membrane Paradigm :

Theorem 5.2. For any Uyge 7, S, U, tends to Soo Uy in 7, as € 0.

Of numerical analysis viewpoint, impedance condtiion (25) is an absorbing boundary
condition on artificial boundary I';, so-called Silver-Miiller radiation condition in
Euclidean case [2]. So, Theorem 5.2 gives a method of numerical approximation, already
used in [6].

6. Interpreation of the Kruskal Manifoid

We reinterpret the whole scattering theory of electromagnetic field by Schwarzschild Black-
Hole, in terms of characteristic Cauchy problem on the Kruskal manifold. We know that
horizon R, x {r = rof x S? is a fictitious singularity arising from the choice of Schwarzschild
coordinates (z, 7, 0, ¢). We can avoid it by using Kruskal coordinates (u, v,0,0):

u=2tan" (-2r ¢ ¢ - /20y
27
v=2tan"1(2r el +re)/ 20y

This conformal transformation allows us to describe Schwarzschild universe S by the
famous Penrose diagram :

Each point of this diagram is a two-sphere $2 and § = -1, 0f, 10, n[, x $2.
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7 =1-m, 00, x {v = m} x $2 is the future Minkowskian horizon (- + 00, 7 -+ c0);
T ={u=-ntx]0, nl,x 52 is the past Minkowskian horizon (1 - oo, 7 - + o0);
“={u=0}x]o, 7, x 52 is the future horizon of Black-Hole (t- + o, r - o)
T =1-m, 00, x {v=0lx S2 is the past horizon of Black-Hole (r- - oo, r - s

These horizons are null submanifolds on which the asymptotic profiles of fields live. Time—
‘ike submanifold T ¢ 18 the stretched horizon R x{r= ro+ €l x S2. Now we define

F(u,v,8,0) =roUg,r, 0,9), (28)

where U is given by (7). Maxwell equations (8) become

Lf=0, Df=0 (29)

where £ is an hyperbolic system for which horizons h*, 1% are characteristic, and the
perator D expresses the constraint of free divergence.

We can interpret our results in terms of characteristic Cauchy problem for (29)in S : the
sxistence of wave operator W= implies that, given data f~ on past horizons &~ U I- - ie.,
given past asymptotic profiles - there exists a unique solution f of (29) in 5 such that
FIH U =f-. The existence of wave operator W implies that this solution S can be

cxtended up to the upper boudnary A* U r*: its trace is the future asymptotic profile. We can
resume by diagram

f\h—u1~ = f-— RE Gl f+ &= f'h+U1+

At last, Theorem 5.1 assures that the characteristic mixed problem for (29) in
R x[ry+e, +oo  x §? with data givenon I~ and impedence condition on I, is well posed,
and solution J; admits a trace on r* (future asymptotic profile); we have

S€
el —/Fei+ .
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Now, the Membrane Paradigm states that if

Pl s g

then

felpoflp,es0,
i.e.
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