A. BACHELOT

Scattering operator for Maxwell equations outside Schwarzschild black-hole

1. Maxwell Equations in Schwarzschild Universe

We investigate the electromagnetic field outside the spherical Black-Hole of radius $r_0 > 0$, described by Schwarzschild metric

$$ds^2 = \alpha^2 dt^2 - \alpha^{-2} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \ r_0 < r \,, \tag{1}$$

and the lapse function α is given by

$$\alpha = (1 - r_0 r^{-1})^{1/2} \,. \tag{2}$$

This metric is singular on the 'Horizon' $\Gamma = \mathbb{R}_t \times \{r = r_0\} \times S^2$ and no radial null geodesic reaches Γ at finite time t. With Wheeler coordinate r_* , the equation of such geodesics is

$$t = \pm r_* + C, \ r_* = r + r_0 \ln(r - r_0).$$
 (3)

In Schwarzschild vacuum, Maxwell's tensor F verifies the equations:

$$dF = 0, d * F = 0,$$
 (4)

where * is the Hodge operator related to metric (1). We split F into electric and magnetic fields measured by an observer with four-velocity u:

$$E_{\mu} = F_{\mu,\nu} u^{\nu}, \ B_{\mu} = -(*F)_{\mu,\nu} u^{\nu}.$$
 (5)

Since we are concerned with scattering theory, we consider the Black-Hole as a perturbation and we choose an observer at rest by respect to the Black-Hole (Fiducial observer of [6]), and then

$$u = \alpha^{-1} \, \partial_t \,. \tag{6}$$

By putting

$${}^{t}U = (E^{\hat{r}}, E^{\hat{\theta}}, E^{\hat{\varphi}}, B^{\hat{r}}, B^{\hat{\theta}}, B^{\hat{\varphi}}) = (e, b), \tag{7}$$

where

$$X = X^{\hat{r}} \alpha \partial_r + X^{\hat{\theta}} r^{-1} \partial_{\theta} + X^{\hat{\phi}} (r \sin \theta)^{-1} \partial_{\phi}, \ X = E, B \ ,$$

Maxwell's equations (4) take a familiar form

$$\partial_t U = -i H U, \ \nabla_S \cdot E = \nabla_S \cdot B = 0 , \tag{8}$$

where

$$H = i \begin{pmatrix} 0 & \nabla_{S} \times \\ -\nabla_{S} \times & 0 \end{pmatrix}, \nabla_{S} \times \begin{pmatrix} 0 & -\frac{\alpha}{r \sin \theta} \partial_{\phi} & \frac{\alpha}{r \sin \theta} \partial_{\theta} \sin \theta \\ \frac{\alpha}{r \sin \theta} \partial_{\phi} & 0 & -\frac{\alpha}{r} \partial_{r} r \alpha \\ -\frac{\alpha}{r} \partial_{\theta} & \frac{\alpha}{r} \partial_{r} r \alpha & 0 \end{pmatrix}, (9)$$

$$\nabla_{S}X = \alpha r^{-2} \partial_{r}(r^{2}X^{\hat{r}}) + (r\sin\theta)^{-1} \left[\partial_{\theta}\sin\theta X^{\hat{\theta}}\right] + \partial_{\phi}X^{\hat{\phi}}. \tag{10}$$

If there is no Black-Hole, $\alpha = 1$ and we find the free dynamic in Minkowski space-time with spherical coordinates. We introduce the Hilbert space of finite redshifted energy

$$\tilde{\mathcal{H}} = [L^2(]r_0, +\infty[_r \times S_\omega^2, r^2 dr d\omega)]^6$$

and the subspace of free divergence without stationary part:

$$\mathcal{H} = \{U \in \overset{\sim}{\mathcal{H}}, \ \nabla_S \ . E = \nabla_S \ . \ B = 0 \ , \int E^{\hat{r}} \, dr \, d\omega = \int B^{\hat{r}} \, dr \, d\omega = 0 \, \}.$$

Theorem 1.1. H is a self-adjoint operator with dense domain on \mathcal{H} and on \mathcal{H} .

Then we solve the Cauchy problem for (8) by Stone's theorem.

Remark: We are not concerned with a mixed problem: we do not need any boundary condition on horizon Γ which is not time-like.

We have a result of finite velocity dependence:

Theorem 1.2. Let U be in \mathcal{H} such that

$$supp\ U \subset \{\,r_*^1 \le r_* \le r_*^2\,\} \times S^2$$

then we have

supp
$$e^{-itH} U \subset \{r_*^1 - |t| \le r_* \le r_*^2 + |t|\} \times S^2$$
.

Schwarzschild metric is trapping: all great circles of sphere with radius $3r_0/2$, so-called 'Photons-sphere', are null geodesics; there exist also null geodesics asymptotic to the Photons-sphere. Therefore singularities of field can be trapped and do not escape at infinity. Despite this difficulty, there is no time-periodic solution in Schwarzschild universe, like the Euclidean case with an obstacle, for which, the second space of cohomology yields non-trivial stationary solutions:

Theorem 1.3. The point spectrum of H on \mathcal{H} is empty.

We can deduce from this result the decay of local energy; but we develop here a complete scattering theory for the electromagnetic field and in particular, we find the result of Damour [3] on the behaviour of fields near the horizon. The study of the scalar case was treated by Dimock and Kay [4] [5].

2. Wave Operators at Infinity

Schwarzschild universe is asymptotically flat and far from the Black-Hole we compare the Hamiltonian H with the classical electromagnetic Hamiltonian H_0

$$H_0 = i \begin{pmatrix} 0 & \text{curl} \\ -\text{curl} & 0 \end{pmatrix} \tag{9}$$

in Minkowski space-time with metric

$$ds^{2} = dt^{2} - d\rho^{2} - \rho^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}), \ 0 \le \rho.$$
 (10)

For any choice of $\rho = \rho(r)$, the difference $H - H_0$ is a long-range type perturbation but because the radial null geodesics (3) are straight like their flat analogs, we avoid long-range interaction between gravitational and electromagnetic fields by choosing

$$\rho = r_* \ge 0. \tag{11}$$

We introduce the usual finite energy Hilbert spaces

$$\begin{split} \tilde{\mathcal{H}}_0 &= \{ \; U_0 \; = \, {}^t(E_0^{\hat{r}}, E_0^{\hat{\theta}}, E_0^{\hat{\varphi}}, E_0^{\hat{\varphi}}, B_0^{\hat{r}}, B_0^{\hat{\theta}}, B_0^{\hat{\varphi}}) \in [L^2(\mathbb{R}_{r_*}^+ \times S_\omega^2, r_*^2 \, dr_* \, d\omega)]^6 \} \; , \\ \mathcal{H}_0 &= \{ \; U_0 = \, {}^t(E_0, B_0) \in \, \tilde{\mathcal{H}}_0; \; \operatorname{div} E_0 = \operatorname{div} B_0 = 0 \; \}. \end{split}$$

Given a cut-off function $\chi_0 \in C^\infty(\mathbb{R}^+_{r_*})$ satisfying $\chi_0(r_*) = 0$ for $0 \le r_* < a$, and $\chi_0(r_*) = 1$ for $r_* > b$, for some 0 < a < b, we construct an identification operator $\widetilde{\mathcal{H}}_0 \to \widetilde{\mathcal{H}}_0$ by putting

$$I_0\,U_0 = \chi_0\,U_0 \quad for \quad r_* \geq 0, \ \ I_0\,U_0 = 0 \quad for \quad r_* \leq 0 \,.$$

We define classical wave operators without Dollard's modification

$$W_0^{\pm}U_0 = s - \lim_{t \to \pm \infty} e^{itH} I_0 e^{-itH_0} U_0 \text{ in } \widetilde{\mathcal{H}}.$$

The spherical invariance of Maxwell equations – that implies a t^{-2} decay of radial components – and our choice (11), cancel the long-range effects and by Cook's method we prove the

Theorem 2.1. $W_0^{\pm} : \mathcal{H}_0 \to \mathcal{H}$ exist, are independent of χ_0 and $\|W_0^{\pm}\| \le 1$.

We deduce from this result the existence of outgoing fields:

Theorem 2.2. If $U_0 \in \mathcal{H}_0$ satisfies

$$e^{-itH_0}U_0 = 0$$
 for $0 \le r_* \le \pm t + C$

then we have

3. Wave Operators near the Black-Hole

The Hamiltonian H degenerates as $r \to r_0$, but $r\alpha H(r\alpha)^{-1}$ admits a formal limit H_1 :

$$H_{1} = i \begin{pmatrix} 0 & h_{1} \\ -h_{1} & 0 \end{pmatrix}, h_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\partial_{r_{*}} \\ 0 & \partial_{r_{*}} & 0 \end{pmatrix}.$$
 (13)

 H_1 is essentially the dynamic in Rindler metric that approximates the Schwarzschild metric near the horizon. We introduce Hilbert spaces:

$$\begin{split} \tilde{\mathcal{H}}_1 &= \{ \; U_1 = {}^t(E_1^{\hat{r}}, E_1^{\hat{\theta}}, E_1^{\hat{\phi}}, E_1^{\hat{r}}, B_1^{\hat{r}}, B_1^{\hat{\theta}}, B_1^{\hat{\phi}}) \in [L^2(\mathbb{R}_{r_*} \times S_{\omega}^2, dr_* \, d\omega)]^6 \}, \\ \mathcal{H}_1^{\pm} &= \{ \; U_1 \in \tilde{\mathcal{H}}_1 \; ; \; E_1^{\hat{r}} = B_1^{\hat{r}} = \pm \frac{\hat{\theta}}{1} + B_1^{\hat{\phi}} = \pm E_1^{\hat{\phi}} - B_1^{\hat{\theta}} = 0 \, \} \; . \end{split}$$

The fields in $\mathcal{H}_1^{+(-)}$ have a left (right) polarization and behave like a plane wave, falling into the future (coming out of the past) horizon

$$U_1\in\mathcal{H}_1^\pm{\Rightarrow}\left[e^{-it\,ll_1}\,U_1\right](r_*,\omega)=U_1(\pm\,t+r_*,\omega).$$

Given a cut-off function $\chi_1 \in C^{\infty}(\mathbb{R}_{r_*})$ satisfying $\chi_1(r_*) = 1$ for $r_* < c$, $\chi_1(r_*) = 0$ for $r_* > d$, for some c < d < 0, we construct an identification operator $I_1 : \mathcal{H}_1 \to \mathcal{H}$ by putting

$$I_1 \, U_1 = (r\alpha)^{-1} \, \chi_1 \, U_1 \, .$$

We define classical wave operators

$$W_1^{\pm}U_1 = s - \lim_{t \to \pm \infty} e^{itH} I_1 e^{-itH_1} U_1 \text{ in } \tilde{\mathcal{H}}.$$
 (14)

Because the Schwarzschild potential is exponentially decreasing as $r_* \to -\infty$, we prove easily by Cook's method the :

Theorem 3.1. $W_1^{\pm} \colon \mathcal{H}_1^{\pm} \to \mathcal{H} \ exist, \ are \ independent \ of \ \chi_1 \ \ and \ \|W_1^{\pm}\| \leq 1.$

We deduce from this result the existence of infalling fields, similar to the disappearing solutions in dissipative scattering.

Theorem 3.2. If $U_1 \in \mathcal{H}_1^{\pm}$ satisfies

$$U_1(r_*, \omega) = 0$$
 for $r_* \ge c$

then we have

$$e^{-itH} W_1^{\pm} U_1 = 0 \text{ for } r_* \ge \pm t + c.$$

4. Asymptotic Completeness

To study the asymptotic behaviour far from the Black-Hole we introduce

$$W_0 U = s - \lim_{t \to \pm \infty} e^{itH_0} I_0^* e^{-itH} U \text{ in } \mathcal{H}_0.$$
 (15)

At infinity of Schwarzschild universe, the electromagnetic field is asymptotic to a free field in Minkowski space-time:

Theorem 4.1. $W_0: \mathcal{H} \rightarrow \mathcal{H}_0$ exists, is independent of χ_0 and $\|W_0\| \le 1$.

To describe the field near the horizon as $t \to +\infty$ we define

$$W_1 U = s - \lim_{t \to \pm \infty} e^{itH_1} I_1^* e^{-itH} U \text{ in } \widetilde{\mathcal{H}}_1.$$
 (16)

Theorem 4.2. $W_1: \mathcal{H} \to \mathcal{H}_1^+$ exists, is independent of χ_1 and $||W|| \le 1$.

The physical meaning of this result of completeness is the famous 'impedence condition' of Damour and Znajeck [3]. More precisely the asymptotic profile of regular fields satisfies a dissipative condition or infalling left-polarization:

Theorem 4.3. Let there exist U in H such that

$$U = Hf, \ f \in [C_0^{\infty}(]r_0, +\infty[\times S^2)]^6.$$
 (17)

We note $e^{-itH}U = {}^t(E^{\hat{r}},...,B^{\hat{\phi}})$. Then, for any $s \in \mathbb{R}$, there exist $e^{\hat{r}},...,b^{\hat{\phi}}$ in $L^2(S^2)$ such that, as

$$r \to r_0, \ t + r_* = s \ , \tag{18}$$

the following limits exist in $L^2(S^2)$:

$$E^{\hat{r}} \to e^{\hat{r}}, B^{\hat{r}}, \alpha E^{\hat{\theta}} \to e^{\hat{\theta}}, \alpha E^{\hat{\phi}} \to e^{\hat{\phi}}, \alpha B^{\hat{\theta}} \to b^{\hat{\theta}}, \alpha B^{\hat{\phi}} \to b^{\hat{\phi}}.$$
 (19)

Moreover, we have

$$e^{\hat{\theta}} = -b^{\hat{\phi}}, \ e^{\phi} = b^{\hat{\theta}}, \tag{20}$$

$$\partial_s e^{\hat{r}} + (\sin \theta)^{-1} \left[\partial_{\theta} \sin \theta \, e^{\hat{\theta}} \right] + \partial_{\phi} e^{\hat{\phi}} = 0.$$
 (21)

Remark by Theorem 1.3, the set of data satisfying (17) is dense in \mathcal{H} .

So, the horizon is rather similar to a dissipative membrane in Euclidean space with surface resistance 377 ohms: (20) is formally the impedance condition and (21) the charge conservation law; but we emphasize that, unlike the Euclidean case for which the dissipative condition is posed at each time and is necessary to solve the mixed problem, impedance property (20) is a consequence of Maxwell equations satisfied at infinity of infalling null geodesics.

Now, we can introduce scattering operator S by putting

$$\begin{split} W^-: \mathcal{H}_1^- \times \mathcal{H}_0 &\to \mathcal{H}, \ W^-(U_1, U_0) = W_1^- U_1 + W_0^- U_0 \,, \\ W: \mathcal{H} &\to \mathcal{H}_1^+ \times \mathcal{H}_0 \,, WU = (W_1 U, W_0 U), \\ S &= WW^-: \mathcal{H}_1^- \times \mathcal{H}_0 \to \mathcal{H}_1^+ \times \mathcal{H}_0 \,. \end{split}$$

Theorem 4.4. W^- is isometric from $\mathcal{H}_1^- \times \mathcal{H}_0$ onto \mathcal{H} ; W is isometric from \mathcal{H} onto $\mathcal{H}_1^+ \times \mathcal{H}_0$, S is isometric from $\mathcal{H}_1^- \times \mathcal{H}_0$ onto $\mathcal{H}_1^+ \times \mathcal{H}_0$.

We give only the idea of proof for asymptotic completeness. Since the kernel of H on \mathcal{H} is null, we may use vector potential and so we have to study the vector wave equation

$$\partial_t^2 U - H^2 U = 0. (22)$$

Thanks to the spherical invariance we can obtain a complete variables separation by using the

generalized vector spherical harmonics of Gel'Fand and Šapiro. Roughly speaking the problem is now reduced to the study of the scalar one-dimensional wave equation

$$\partial_t^2 v - \partial_{r_*}^2 v = \alpha^2 r^{-2} v. \tag{23}$$

The crucial point is that, thanks to our choice of Wheeler coordinate, the potential $\alpha^2 r^{-2}$ in (23) is a short-range type and we apply classical results of Birman and Kato. In a suitable sense, solution ν of (23) satisfies

$$v(t, r_*) \sim v_0(r_* - t) + v_1(r_* + t), t \to +\infty$$
 (24)

 v_0 and v_1 are respectively the asymptotic profiles of parts of the field, respectively, outgoing at infinity, infalling into the Black-Hole. To get the asymptotic fields and to prove the existence of W_0 , W_1 , S, we apply the two Hilbert spaces scattering theory.

5. Membrane Paradigm

The Membrane Paradigm [6] states that if we are concerned only with the behaviour, far from the Black-Hole, of an initially incoming field, we may approximate the Black-Hole by a dissipative spherical membrane of radius $r_0 + \varepsilon$, $0 < \varepsilon$, called 'stretched horizon'.

We consider the mixed problem for Maxwell equations (8) in $]r_0 + \varepsilon$, $+\infty$ [\times S^2 and on stretched horizon $\Gamma_{\varepsilon} = \mathbb{R}_t \times \{r = r_0 + \varepsilon\} \times S^2$ which is time-like, we impose impedence condition

$$E^{\hat{\theta}} = -B^{\hat{\phi}}, \quad E^{\hat{\phi}} = B^{\hat{\theta}}. \tag{25}$$

It is a classical dissipative hyperbolic problem of which the solution is given by a semigroup $V_{\varepsilon}(t)$ on Hilbert space $\mathcal{H}_{\varepsilon} = \{L^2(r_0 + \varepsilon, +\infty [r \times S_{\omega}^2, r^2 dr d\omega)\}^6$. For $0 < \varepsilon < a$ we define the scattering operator

$$S_{\varepsilon}\,U_0 = s - \lim_{t \to +\infty} e^{\,it\,II_0}\,I_0^*\,V_{\varepsilon}(2t)\,\,I_0\,e^{\,it\,II_0}\,U_0 \ \ \text{in} \ \ \widetilde{\mathcal{H}}_0\,.$$

Theorem 5.1. $S_{\varepsilon}: \mathcal{H}_0 \to \mathcal{H}_0$ exists, is independent of χ_0 and $||S|| \le 1$.

Now, in Schwarzschild universe, the asymptotic behaviour at infinity of an initially incoming field is described by operator S_{00} defined by

$$\forall U_0 \in \mathcal{H}_0, \ S_{00} \ U_0 = \Pi_0 \ S(0, \ U_0) \,, \tag{26}$$

where Π_0 is the projector from $\mathcal{H}_1^+ \times \mathcal{H}_0$ onto \mathcal{H}_0 . The following result is the mathematical foundation of Membrane Paradigm:

Theorem 5.2. For any $U_0 \in \mathcal{H}_0$, $S_{\varepsilon} U_0$ tends to $S_{00} U_0$ in \mathcal{H}_0 as $\varepsilon \to 0$.

Of numerical analysis viewpoint, impedance condtiion (25) is an absorbing boundary condition on artificial boundary Γ_{ϵ} , so-called Silver-Müller radiation condition in Euclidean case [2]. So, Theorem 5.2 gives a method of numerical approximation, already used in [6].

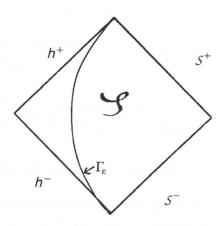
6. Interpreation of the Kruskal Manifold

We reinterpret the whole scattering theory of electromagnetic field by Schwarzschild Black-Hole, in terms of characteristic Cauchy problem on the Kruskal manifold. We know that horizon $\mathbb{R}_t \times \{r = r_0\} \times S^2$ is a fictitious singularity arising from the choice of Schwarzschild coordinates (t, r, θ, φ) . We can avoid it by using Kruskal coordinates (u, v, θ, φ) :

$$u = 2 \tan^{-1} \left(-2r_0 e^{-(t-r_*)/2r_0} \right),$$

$$v = 2 \tan^{-1} \left(2r_0 e^{(t+r_*)/2r_0} \right).$$
(27)

This conformal transformation allows us to describe Schwarzschild universe S by the famous Penrose diagram:



Each point of this diagram is a two-sphere S^2 and $S =]-\pi$, $0[_u \times]0$, $\pi[_v \times S^2$.

 $\vec{r} =]-\pi, \ 0[_{u} \times \{v = \pi\} \times S^{2} \text{ is the future Minkowskian horizon } (t \to +\infty, \ r \to +\infty);$ $\vec{r} = \{u = -\pi\} \times]0, \ \pi[_{v} \times S^{2} \text{ is the past Minkowskian horizon } (t \to -\infty, \ r \to +\infty);$ $\vec{r} = \{u = 0\} \times]0, \ \pi[_{v} \times S^{2} \text{ is the future horizon of Black-Hole } (t \to +\infty, \ r \to r_{0});$ $\vec{r} =]-\pi, \ 0[_{u} \times \{v = 0\} \times S^{2} \text{ is the past horizon of Black-Hole } (t \to -\infty, \ r \to r_{0}).$

These horizons are null submanifolds on which the asymptotic profiles of fields live. Time-like submanifold Γ_{ε} is the stretched horizon $\mathbb{R}_{t} \times \{r = r_0 + \varepsilon\} \times S^2$. Now we define

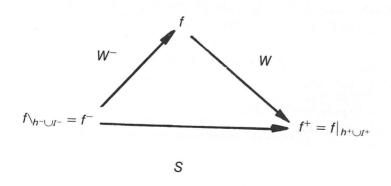
$$f(u, v, \theta, \varphi) = r\alpha U(t, r, \theta, \varphi), \qquad (28)$$

where U is given by (7). Maxwell equations (8) become

$$\mathcal{L}f = 0, \quad \mathcal{D}f = 0 \tag{29}$$

where \mathcal{L} is an hyperbolic system for which horizons h^{\pm} , I^{\pm} are characteristic, and the operator \mathcal{D} expresses the constraint of free divergence.

We can interpret our results in terms of characteristic Cauchy problem for (29) in S: the existence of wave operator W^- implies that, given data f^- on past horizons $h^- \cup I^-$ - i.e., given past asymptotic profiles – there exists a unique solution f of (29) in S such that $f \mid h^- \cup I^- = f^-$. The existence of wave operator W implies that this solution f can be extended up to the upper boundary $h^+ \cup I^+$: its trace is the future asymptotic profile. We can resume by diagram



At last, Theorem 5.1 assures that the characteristic mixed problem for (29) in $\mathbb{R}_t \times [r_0 + \varepsilon, +\infty[_r \times S^2]$ with data given on I^- and impedence condition on Γ_ε is well posed, and solution f_ε admits a trace on I^+ (future asymptotic profile); we have

$$f_{\varepsilon|I^-} \xrightarrow{S_{\varepsilon}} f_{\varepsilon|I^+}$$
.

Now, the Membrane Paradigm states that if

$$f^- \mid_{h^-} = 0$$
, $f_{\varepsilon} \mid_{I^-} = f^- \mid_{I^-}$,

then

 $f_{\varepsilon}|_{I^+} \rightarrow f|_{I^+}, \ \varepsilon \rightarrow 0$

i.e.

$$S_{\varepsilon}(f \mid_{I^{-}} \rightarrow S_{00}(f \mid_{I^{-}}), \ \varepsilon \rightarrow 0$$
.

References

- [1] A. Bachelot, Gravitational scattering of electromagnetic field by Schwarzschild blackhole, Publications de l'Université Bordeaux-I, mai 1990.
- [2] A. Bendali and L. Halpern, Conditions aux limites absorbantes pour le système de Maxwell dans le vide en dimension 3, C.R. Acad. Sci. Paris, t. 307, série I, 1988, p. 1011-1013.
- [3] Th. Damour, Black-Hole eddy currents, Phys. Rev. D 18, 10, 1978, p. 3598, 3604.
- [4] J. Dimock, Scattering for the wave equation on the Schwarzshild metric, Gen. Relativ. Gravitation, 17, 4, 1985, p. 353-369.
- [5] J. Dimock and B.S. Kay, Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys. 175, 1987, p. 366–426.
- [6] D.A. MacDonald and W.M. Suen, Membrane viewpoint on Black-Holes: Dynamical electromagnetic fields near the horizon, Phys. Rev. D 32, 4, 1985, p. 848-871.

A. Bachelot University of Bordeaux I, Department of Applied Mathematics, 351, Cours de la Libération, F-33405, Talence Cedex FRANCE