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Abstract. This paper deals with the calculation of time—dependent electromagnetic field near a
perfectly conducting body. Our approach for obtaining the scattered wave is based on a boundary
integral equation method applied to acoustics by A. Bamberger and T. Ha Duong. By studying the
associated frequency domain problem, we prove this integral equation corresponds to a space—time
coercive variational problem. The discrete approximation of the variational formulation leads to
a stable marching—in-time scheme. We present numerical computations in 2D+1.

1. Scattering problem for a conducting body . We consider the
scattering of an incident electromagnetic wave (E ¢, H* ) by a tridimensional
object Q_ with regular bounded surface I'. In the exterior domain , Q, , the
scattered field satisfies the Maxwell equations (P,) and the solution (E , H) of
(P,) can be extended in Q_so that the interior problem (P.)is also satisfied :

—-0,E+curlH=0,9,H+curlE=0,in R,xQ,
(P,)< divE=divH=0 ,inR,xQ,
AAE=-RAE'=c ,onR,xT ¢=0,¢<0,

where 7’ denotes the unit normal to the surface [, pointing into Q, . Then it is
well-known that the solution (E , H ) of (P,) and (P_) can be written in terms
of retarded potentials -

el & 9, J(1y) 1 q(1y)
E(t,x)=-7— njr—lx—yl do, -y -grad 'fr oy do, (1)
Ht,x)=r=rot | L9 g6 teR*and xeT (2)
’ 4r rle=yl 7’

where the retarded time 1=t —|x—y| . The surface currents and charges j and q
are the jumps of -7 A H and -7.E through T, respectively. They are
connected by the equation of charge conservation :

3,q+div - j=0 . (3)
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Hence, surface current j determines E :

2 J(1.y)

grelaf o0 Fdivrj(s,y)
E(t,x)——4njr e L GIUFJiS,3)

dsdo
b=y

d0y+4—17;grad_[rf e

and the boundary condition becomes for xeI”

o =l e ey e 8 * divrj(s,y) s
TL’A{nA4ﬂJ.r s doy}—4ngradrjrfow—dsdoy_n/\c.

Multiplying formally this equation by a vector test function o(t,x) on R} x T,
we obtain the variational formulation :

(t,x), . divro(t,x) t-le=yl . .
ﬁ;o {”rxrﬁad(t—lx—ywhé*_ﬂ—do divpj(s,y)dsldo,do,)dt =

=4r J:: '[r o (t,x) [RAc(t,x)ldo, dt

We show this bilinear form is continuous and coercive on suitable Hilbert
spaces; its discrete approximation leads to a stable marching-in-time scheme.

2. Time-dependent problem. We begin this section with a brief
description of the time functional framework according [1], [5]. We introduce :
H™2div,D)={ceH TP, c.7=0, divrc e H2(I) )
H™2(curlD)=(ceH 2T, c. % =0, curlrc e HY2(I) )
with their natural norms | . l-ipaiy and . I yp ot - Notice that if we identify
L2(T") with its dual space, we can prove ( [3], [8] ) that H ~V/2 (div,I') is the dual

space of H 12 (curl,T) and conversely, (H ~V2 (curl,l))’=H V2 (div,I) .

Let E be an arbitrary Hilbert space and s and o some reals, 6>0. Then
#.(R*,E) is the set of E-valued distributions f with support in R* satisfying :
et NfeL (R;:E), (NN (0)=(io)* f(o)
and f (w) is the Fourier-Laplace transform of f .We shall denote .7(86( RY E)

norm by |. |, g : :
Flopz=y e INFIpd 2 = ([ 777 o 1 f @)1} d0)™.
For simplicity, we denote by | fls,s-1/24i ( TESD . [ Flo s t00u1) THE
norm of fin #3,(R*,H V2 (div,)) (resp. #5(R*,H V2 (curl,) ).
As we have already noted, relationships (1) and (3) lead to a time
dependent integral equation relating j and ¢ on the surface of the body; in fact

this relation involves a pseudodifferential operator R on R,xTI similar to
Neuman operator for the wave equation; unfortunatly R belongs to the exotic
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class OPS{,3’2/3 for which the properties of continuity on Sobolev spaces are
unknown. According to Bamberger-HaDuong’s idea [1], [56 1, we study the
associated harmonic problem and deduce properties on R by using Fourier-
Laplace transform. All the results in time domain follow from those in
frequency domain. It suffices to apply an inverse Fourier-Laplace transform.

We prove that for ¢ belonging to .76’3,( R*, H V2 (div,I) the problem (P4) has
a unique solution (E,H ) which satisfies the following energy estimate :

[ a2 (|E@,x)|2+|H,x) |2 )dxdt< C

2
3 bioar rlels1-12div Y 0200>0

00y

This electromagnetic field, represented by ( 1 )-( 2 ), is uniquely determined by
density j. Then the integral equation for the transform p of -0,/ translates
into the integral equation forj :

Rj =TiArc (4)
where R is defined by :

Rj=-TA(7r3,8) )~ gradrSdive( [ j@d )

and S is the retarded potential:

1 (t— 2 ) +
SFx)=4= ([ L—l}f?ﬁu—dm) I, ¢eRtgel

If datum c is in Jt’?,( R*, H Y2 (djy,I) for o> 0 then there exists a unique
solution j in Jfg( R*,H V2 (div,I)) of the integral equation. More generally if
¢ e (RY, H™V2 (div,I) then je #°" (R*, H™2 (div,1)) :

17 lo,8-1,-1/2di0 S Co | € l6,641,-1/2div » V0 200>0 . (5)

At last we get a space-time variational formulation for the solution j of (8):

Vpe#' (RY,HY2 (div,I)

[17 2ot <p(t,), Rt )>dt=[ " et <p(t,), Hac(t,)>dt  (6)
Hence the pseudodifferential operator R is linear continuous from
#2(R*, H-V2(div,1) to #°(R*,H V2 (curl,T)) and defines a bilinear form
which satisfies the coercivity condition :

+0 . 2at 2 s
o P <pt,.),Rp,.)>dt 2 C|pl5-1,-12div
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.

related to the electromagnetic energy:

teo 20t : L Rl T 2 2
fo e 2%t <jt,), Rjt, )>dt_ojo e UEDIZ,, 0,00 Oz o .

We close this section with a few words about the time regularity results.
We did not obtain the best ones as we can see in ( 5 ). Because of the space-time
decoupling in the employed technique, this method will probably not provide
better results. However it will be more convenient for the numerical
approach.

4. The discrete approximation of the variational problem. To
calculate current j, induced on I', we give an approximation of variational
problem ( 6 ) using a finite elements method in both time and space. We begin
by discretizing in space.

We just present the formal elements of the space
approximation.Therefore we shall discuss neither the substitution of the
surface I" by an approximate surface T, nor the construction of the
approximate space of H 24 div.T)-. For example, one can follow Nedelec’s
ideas [ 7 ] for the construction of T" » and the associated finite elements space is
then described in [ 2 ].

Let V}, be a finite dimensional subspace of the space H ~1/2 (div,I). The
unknown current is represented by an expansion of basis function (p}l of Vj, as :

Ny,
J&,2)~jpt,0)=Y o) ¢} (x)
J=1

where aje.%’lo( R*,R) . The discrete problem consists in finding @; such that :
%fme‘z“‘ﬁ-(t)ﬁ EP Gy (t-le—yD+EP e[ ai0)d o) vy
o o Ixp il XYy = 1Y) l T Xy
s IR s e R R N,
== ) poi® B; r 9@ (e &x)AT, )dy (= » Vi=1,..,N;

where B, is a test function in Jt’,l,( R*R), ¢, is an approximation of ¢ in V;, and

Kﬁ) and Kflg) are defined by :

h h . h g h
1) _9; ()p; () 2) _dwr¢P' (x)divp ?; (y)
K o=l Ky Bde @),

In a second step, we choose a segmentation of the time positive axis into a
regular grid {¢,=n At, nelN). The functions of %' «(R*,R) can be
approximated by those of the subspace ¥™ (At, R ) composed of polynomials of
degree m21 in each time interval I, =(t,,t,,1) . The approximate current can
therefore be written as :
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Np,

It D=y 0@ 0" (@) (7)
j=1

where o5, €X™ (At, R ). We get the discrete approximation of problem ( 6 )

e @f] B ey aint- oDk (T 2y ndndyayds

.h:l 4 p

=" g2otg ] SR eEHATTdy e VLT N (8)
= )5 jant) ) @ X, x)An, )ay (x » VJ=1,....,N},

zand all test functions Bja: €™ (At, R). In order to describe the method, let us
consider the most simple choice of m which is m = 1. The m>1 case would
use the same technical ideas as in calculations below.

Therefore «;,, is a constant in I, , denoted by a7 . If we choose the test
functions as

Bins W)=t-t,, for tel, j,=t, —t for tel,,=0 elsewhere ;

a2 simple substitution into ( 8 ) and some additional manipulations show that
we can rewrite ( 8 ) in matrix form as :

n-1
MoA™= -% M, ,A*+B" 1<n
k=0

where A® is the vector of the unknowns (a’{,...,afvh)T and B” is the vector
corresponding to the right-hand side of ( 8 ). The matrix M » 1S symmetric :

1 i 1 ey 2 742)
M;'TIO € (49 {Ijmrls+tk_l<lx—y|53+th[K§l (x’y)+2 (sHy—lx—y ) K.(ﬂ )] dy(xy)

At 2)
t, — =y - 3D At K dy(x)dyly) } ds
D<r/|x-y|5s+tz.(s+ PRl S Sl dadg))

_ o20At A 20s KD 1 N ZK(.Z) dy(x,y)
. "'0 3 s{Hl’xr/s+t1,_2<lx—yISs+t;,_1[ # (x,y)+2( o Ix_yl) o Pllor ey

At 2)
tey — l2y| - 5) AL K il )ik
1'5<I"/Ix~y|smk_1(s+ h-1~ 12y| = 5) ALK (x)] dy(x)dy(y) )

If the time sample interval At is small enough, then M is positive definite

and given ( B" ), computed from ( 8 ), this infinite system has a unique
solution (A" ), and this sheme is convergent :
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THEOREM Assume solution j of (4 ) satisfies

je  XR* H™(div, 1)) A #T2 R H-Y2(div, 1)), my>1, my> 2;
then for any € €10,1/2] , solution j h,At defined by (7)) converge toj :

o T 9.
|-]_-]h,Az I 0,-1,-1/2div SC::{ Ic_ Ch,At I o1,-12div T Tl_l-] I 0,2,mdiv + At™2 2 l-] I 0, mg+1,-1/2div ).

Unfortunately this scheme is not marching in time because A°is not
determined. Then, taking account the fact that M; is bigger than M, o we make
a lumping by putting:

My =M, +e** M, ,M;=M, ,2<k, B"= B", 1< n,
and we solve

n-1

MA =B, MA"=-Y M., A*+B"™ 1<n:
k=0

A single inversion of matrix ATI is required and this quasi-explicit marching-
in-time scheme comes from a discrete variational problem: by putting

Np
Ar=(dh,af)T, it 0=Y an® ok @) (9)
ot |

where

ajpr e.7é’1,_,,(At, R), al'A,=a}‘ onl,
Jnas is the unique solution in #1 (A, V) = #1(At, R)®V, satisfying
Vpe XL (A, V),
J“” —201'” IxT %t-—yxTa‘j"A‘ (t=lx—yly) +‘ﬁ%ﬁ:_t|’2( -r o_ it divpjpp (s,y)ds ) dy(xy)dt

ath (t,x)

+ J: e 20t ( [E +1] At—¢) ” =T

{ Oujnas (t=lx=yl, )+

t
| |St—[&*]At

Pl o D dwrat(p(t x) J'

- =]
arr i J' ), rdhs 6y dsdT)) dytxyi=

At

=ax [T [ o(t,2) acy a0 (t.2)1dyinnt

where [x] notes the integer part of x :[x] e N, [x]1<x <[x]+ 1.
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The coercivity of this bilinear form on ¥ }, (At, V3 ) leads to the scheme stability

THEOREM Letc B At be a consistant approximation of cin ¥ i(]R*;H A2(ding ). .
Then j; 5, given by (9) satisfies:

|, ¢l 0,-1,-v2div < Cst,h >0, At 0.

5. Numerical Experiments. We provide here numerical results for the
two dimensional TM-scattering problem from an infinite perfectly
conducting cylinder Q_: the electric field E=(0, 0, Ez) is then parallel to the

axis of the obstacle and satisfies:
@2 -A,)E=0 in R,xQ,,
E;=E;onR,xT, Ez(t,x)=0,E, x)=0 for t<0, xeQ,.

Following an analogous procedure to that used for the 3D problem, one can
represent the scattered field in terms of retarded potentials:

s i sl p(1,9)

where p is related to the normal derivative of the total field
p=—0,Ez;-0,E} .

Sy writting the boundary condition on E; we obtain the integral equation

i 3 2] -z p(1,y) ;

The unknown p is determined from the associated variational problem in

ZL(R*HV2(I) :

1 - - |z | 9.0(1,)
2z Jo e Jlae k [P a2 27Oy dedi= i

=~ [ J.at.» 3B ¢ dT, dt.
Before beginning the approximation process, notice that in the variational

formulation the time integral -ro_ i , following from the failure of Huygens'
principle in the 2D case, leads us to similar characteristics as in the 3D
Maxzwell formulation.

We now turn to the discrete approximation of (10). As we have already

noted, the chosen integral method uses the finite-element method in both time
and space. First, the curve I is approximated by a union of straight segments
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I,,.The finite dimensional subspace of H ~Y2(T,) is the space of functions
defined over I'y whose restrictions to each segment is a constant. Next, the
time positive axis is partitioned into intervals of lenght Az. Since the unknown

and the test function belong to .15’1,,(112'*,H’1/2 (I") , it seems that the
approximation by continuous piecewise polynomial of degree one is natural.
This approximation leads to a matrix system which is not a time stepping
procedure. In order to overcome this numerical trouble, we do a lumping as
in the 3D case. The new corresponding scheme is a marching in time
algorithm that we call the " IP,-IP, scheme ".

Using the fact that no derivative of the test function appears in (10) and
that the time regularity results are not the best ones, one can try a zeroth-
order time approximate test function, ie. a piecewise constant function in
time.One obtains from this choice a marching in time scheme denoted by ”

Py-IP, scheme". We also remark that the time integral _r allows us to

take a weaker time regularity ( P finite element ) for the unknown. Then the
approximate problem yields to an other marching in time procedure, the
"Py-IP scheme " .

Three representative geometries are considered: a circular cylinder, a
square one and an elliptic one.The chosen incident fields are plane waves z-
polarised and traveling in the negative x—direction.In order to assess the
validity and the effiency of the three schemes, we use the principle of
limiting amplitude : given an incident wave of frequency w, explio(t—=x)], ast
tends to infinity, exp(—iwt) Ez(¢,.) tends to the solution of time harmonic
Maxwell's equations. In the following figures , we present the curves of the
modulus of the current. The figures 1-2-3 show an excellent agreement of
our results obtained by the " IPy—IP, scheme " with those computed by CEA-
CESTA 's boundary integral equation code.We test the long time stability of
the schemes with an impulse excitation: in figure 4, we constat that the " Py—
Py scheme " provides the best accuracy without the oscillations that appear
by using the " Py-IP, scheme ”

«10°3 «1073
CIRCULAR CYUNDER (150 MHZ) ELLIPTIC CYUNDER (250 MHZ)

64
o
5 4
4 4
34
4 2]
4 14
B, <~

T T T T T T T T 7
a.0 DS lO !5 20 25 30 15 lD 45 50 55 63 0.0 a5 1.0 1.5 20 25 30 35 40 45

>

CURRENT (A/M)

CURVILINEAR ABS.(M) CURVILINEAR ABS.(M)
fig. 1 fig. 2
— —— time dependent code — — —time dependent code
—— harmonic code —— harmonic code
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«10-3 <103
SQUARE CYUNDER (1 GHZ) CRCULAR CYUNDER (150 mHZ)

CURRENT (A/M)

" *—e--0ng.
BB 05 02 03 04 05 08 07 08 o8 b E o 1926 25 TR e
CURVILINEAR ABS.(M) TIME (NS
fig. 3 fig. 4
= — - time dependent code - =—P-P, scheme
‘—— harmonic code . —— PP, scheme

The second method to evaluate the R.E.S. by a time dependent approach
consists to take advantage of Majda's formula of representation of the
scattering kernel [6] [8]; We compute by the Py-IPy scheme the scattered wave
o. for incoming wave a regular breve impulse ¢ (¢— (x-x4)/c) approximating
the singular incoming wave § (f— (x~x¢ )c) where 6 is Dirac's distribution at 0:

¢(t)={ z—a’g(l—coswt) : te[O,%[], w>>1,

0 elsewehre.
Sy taking the Fourier transform p of b we get the backscattering amplitude by
the formula

s Gk, u-u) |2 =|f1;(%)1’2 jr e™* 4% b (ke x) dy(x)| 2

The main advantage of this method is the gain of computation time. The
“ollowing table gives some R.E.S. in dbm? computed by the harmonic and time
dependent codes.

frequence ( MHZ ) HARMONIC CODE Po—IPy scheme
100 5,3210 5,3277
150 5,1580 5,1569
250 5,0500 5,0253
300 5,0280 4,9537
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6.Conclusion. The aim of this paper is to obtain the time-dependent
solutions for scattering problems of electromagnetic waves for conducting
obstacles. We use an integral method based on the representation of the
electric field in terms of retarded potentials on boundary I'. This method
requires to investigate an exotic pseudodifferential operator R, of Neuman-
type, on R;xI'. We deduce the properties of R from the study of the harmonic
problem, by using a Fourier-Laplace transform.This technique allows to
construct a well-posed space-time variational formulation. After a finite
elements discretization this formulation leads to a simple time-stepping
procedure and stability and convergence results are obtained. We present
some numerical experimentations in 2D by computing the electric field
scattered by a circular, elliptic, or square, infinite cylinder. Given a
frequency @ we compare our time dependent code with an harmonic code of
CEA/CESTA thanks to the principle of limiting amplitude: the results present
an excellent agreement ; the computation of a short impulse shows the long
time stability of this scheme; therefore we can expect a good efficiency of this
method for the study of the scattering problems.
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