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Abstract. This paper is devoted to the theoretical and computational investigations of
the scattering frequencies of scalar, electromagnetic, gravitationnal waves around a
spherical Black Hole. We adopt a time dependent approach: construction of wave operators
JSorthe equation hyperbolic Regge—Wheeler equation;asymptotic completeness;outgoing and
incoming spectral representations; meromorphic continuation of the Heisenberg matrix;
approximation by dumping and cut-off of the potentials and interpretation of the semi
group Z(t) in the framework of the Membrane Paradigme. We developp a new procedure
for the computation of resonances by spectral analysis of the transient scattered wave,
basedon Prony’salgorithm.

Introduction

This paper deals with the Scattering Frequencies of the Regge—Wheeler
equation describing the perturbation of a massless field of spin s outside a
Schwarzschild Black-Hole of radius 1 :
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We developp the complete Scattering Theory for (1): existence and completeness
of Wave Operators (part I); spectral representation and meromorphic
continuation of the Heisenberg Matrix (part II); Lax-Phillips approach by cut-
off approximation (part III); computation of the Resonances by Prony's
algorithm (part IV). The details of the proofs will appear in [2].

I. Time Dependent One Dimensional Scattering Theory

R. Phillips [11] has studied (1) when the potential V decays as ’x I g
Since V;; decays more slowly we cannot apply these results. J. Dimock [5] has
investigated the scalar case (s=0); our work [1] is devoted to the Maxwell
System on the Schwarzschild background (s=1). In [2] we have considered
equation (1) as a perturbation of the free wave equation

a? D, — 83 O, =0, teR, xeR , 4)

with the general assumption on the potential:
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If V_is non zero, the functional framework is rather delicate to construct due
to the possible existence of bounded states; to make this section simpler, we
describe our results in the case

4 Ad A s (6)
We define the energy spaces
#,=BLYR)x LYR), #=H(R)x LAR), (7

which are respectively the closures of C2(R) x C; (R) with respect to the norms

BN= g AR+ AR, ED= [ AP+ 162+ V@ 1A Pde. (8

We introduce the unitary groups U,(¢) on ¥, and U(t) on # expressing the
solutions of (6) and (1) at time # from the initial data, by putting

U@ (9(0), 9, D(0)) = (D(2), 9, D(2)), U,@) (@, (0), 9, D, (0)) = (@, (2), 9, D, ()
We need some dense subspace 9, of ¥ and ¥, , invariant by U,®):
Do={f="(f1, FICTR) x CXR), [ folw)dx=0) . )
We introduce the classical wave operators

Wef=s~lim U-HUW®f in . (10)

THEOREM 1 —For any fin D, , the limits W, f are well defined and satisfy
EW. )=E, (N, WD, =x. (11)

W, , W_ can be extended by continuity as isometries from ¥, onto ¥ and the
Scattering Operator

S=w_'w. (12)

Is an isometry from ¥, on Ao

Idea of the proof: When assumption (6) is fulfilled we use Dimock's approach:
the existence of W.f for £in 9, is proved by Cook's method. The Agmon-Kato-
Kuroda theorem and the invariance principle give the completeness of the
wave operators associated with (- 92 )2 and (- oy e get that the
solutions of (1) associated with initial data £ in
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are asymptotically free:
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t—+00

We conclude by noting the density of 9,in ¥. In the general case where the
potential satisfies only assumption (5), we adapt Phillips's method [11] and we
prove the existence of Scattering Operator (12) ( see [2] for the details).

IL. Analytic Properties of the Heisenberg Matrix

The equivalence between the stationary scattering theory and the time
dependent approach is expressed by the spectral representation that connects
the Scattering Operator S and the Heisenberg matrix. We define the free
spectral representation of #, by putting for fe CZO(IRx)XC(f(IRx)

%D f(G, a)) :Eu(f’ (p()(' > o—y (D)) ) (12)

oelR*, wef-1, 1}, ,(x, 5, 0) = 1“ (e7i0%®  jgemiox@) (13)
o\ 2m

R, can be extended as an isometry of #, onto ARSI ) D Then we prove
that the Scattering Operator is unitarily equivalent to the Heisenberg matrix
defined by the coefficients of transmission, T, and reflection, R, given by

T(c)= 2e.[f (o 6) %%(x, R G)C—ilé‘(x,o)]_l Ry (14)

2io R (o) = T(0) [f+ (x, — wo) % (x, wo) - f_(x, wc)% (x, — wo)] . (15)

Here, f.(x, 0) are the Jost functions, solutions of the integral equation:

o ERY, fils, oy = edor LSOy Ly e sy (16)

+oo o

THEOREM 2 - Assume (5) fulfilled. Then for any FeL2(lRG x {-1, 1},,) we have:

[#, S %;1F] (0, ) = T(c) F(o, 0)+ R_,(0) F(o, -0), ceR*, we{-1, 1}.

We are interested in the meromorphic continuation of T(o); we know it is
connected with the analyticity of V with respect to x. Therefore we have
investigated the analytic continuation of the inverse function of (3)

x—=r;x=r+log(r-1)
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and we prove the following

PROPOSITION - For any potential V, ; given by (2), there exists B >0 such that :

(1) Viscontinuouson Ru{xeC, |Rex | > B} analytic inside,

(i) Vo5 ,+ 5L, pJ;OIV(iBipeiG)|dp<+oo B

and: sup |pV(pe'®)| —0,peR,p —>+oo .
lecl<]o]

By rotating the path of integration in (16) we prove the main result of this part:

THEOREM 3 - We assume that assumptions (5), (17) are fulfilled. Then for any
xeR , f.(x, 0) is analytic by respect to o in C\iR".

The poles of 7(c) are so called resonances, scattering frequencies, or quasi—
normal modes of the Black—Hole.

III. Cut-off Approximation

The Lax-Phillips theory provides a time dependent characterization of the
resonances associated with a compactly supported perturbation of the wave
equation in Minkowski space time: the solution has a spectral decomposition
in terms of generalised eigenfunctions. According to a suggestion of B.Schmidt
[12], we apply the Lax-Phillips approach to the wave propagation on the
Schwarzschild background by cutting off the Schwarzschild metric near the
horizon and at large radius, and taking repectively the Rindler metric near the
horizon and the flat metric near infinity. Therefore we make the assumption:

VeL™(R), V=0, 3p>0; |x|=p, Vix)= 0. (18)
Then the solution ® of (1) on R, xR, satisfies

9, D(t, £ p)+d, D, +p)=0, teR*. (19)

Hence @ is solution of (1) on R} x]-p, p[ with boundary condition (19). The
propagator of this mixed problem plays the role of the semi group Z(¢) of Lax-
Phillips; this approximation by truncated potential is called Membrane
Paradigm: (19) at —p is the 7. Damour impedance condition on the streched
horizon [6]. From a numerical point of view (19) is the zero order absorbing
condition of Engquist-Majda [7].
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THEOREM 4 - If assumption (19) is fulfilled, then T(c) given by (14) is
meromorphic on the whole complex plane; each horizontal strip contains a finite
number of its poles; the poles with non-negative imaginary part are purely
imaginary , of finite multiplicity, and their set is finite; the set of the poles with
negative imaginary part is infinite.

We arrange the frequencies o in decreasing order of their imaginary parts :

Im o;,<Imo; <0sImogsImo <..<Imo_y, 15j.

Then foreach n>-N,e>0,p>0, thereexists C(n, ¢, p)>0,such as

02~ Y ¢ C @, 0] < Cn, &, p).(L+PV2 [T (20)
=N : ;

holds for any solution ® of (1) with compactly supported initial data fin ¥, where

C; = Residu (ﬁ | £, 0 Go /) - e dss 0= o).

The spectral decomposition (20) characterizes the resonances and
guaranties that the solution is exponentially vanishing if there is no bounded
state.

R.G.Newton has emphasized in [10] that the singularity structure of the S
matrix for any potential of infinite range must generally be expected to differ
from the limit of the singularity structure for the corresponding cutoff
potential when the cutoff tends to infinity. Nevertheless we prove that the
resonances are the limits of the ones associated with cutoff and damped
potentials: given y>1, >0, p > 0, we put

Vydx) = Xl-p,p] ). e* el WA

Let R(V, E) be the set of resonances in Ec C for a potential V .

THEOREM 5 - If assumptions (5), (17) are fulfilled, then for any >0,y > 1, and
bounded open Q satisfying

0. el ! s 0.
Qc {oeC*, 2 <Argo<m+ 2y}’
there exists €0>0 such as given €€]0, gy], there exists R>0 satisfying :

Vp>R, Card #(V, Q)= Card (VP ., Q)

Y, €?

YoV, O)-3ab cRWE. Q) loser dhs s

V€7

If Qc{oeC,Imo >0} wecantakeey=c=0.
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IV. Computation of the Resonances by Prony's Algorithm

The numerical investigation of the resonances is very delicate because
these poles are not characterized in a variational way and we know no error
estimate. Hence the values obtained by computation can be some artefact ;
therefore it is very important to compare the results given by different methods.
All the methods used to find the Black Hole Resonances consist in solving the
elliptic equation

— 2D+ V) P=062 O

provided with the outgoing radiation condition [4], [8], [12]. Instead, we solve
the ¢{ime dependent equation (1) and apply the Prony procedure already used for
acoustic waves [9], [13]. More precisely, we compute solution ® of (1) by a finite
difference scheme. According to Theorem 4 the asymptotic expansion

N :
Dl gl N Coe D, (20)
=1
1s valid for x( fixed and ¢ > ¢, large enough. Then we choose a sample rate
AT>0 and denote

f/? = q)(to +k AT, XO) 3 Zj = e‘inAT

Hence we have to solve the polynomial system
N
D@ s k=05l (21)
=1

Following the idea of Prony this problem can be reduced to finding the zeros 2;
of the polynomial

e =0 (22)
k=0

where the coefficients o, are the solutions of the overdetermined linear system

oy =1, i & fim=0, m=0,.,M-1, M>N. (23)

J=0 ;
This system is solved using the generalised inverse and the singular value
decomposition. Since (23) is very ill-conditioned, this step is unstable with
respect to the slight variations of f), . Therefore the computation of @ has to be
very accurate. For instance we choose the spatial and temporal grid sizes of
the finite difference scheme At=Ax= 10" on the domain [-40, 120], x [0, 1601, .
To solve (22) we use Muller's algorithm. The following table gives the values of
the resonances of gravitational waves (s = 2) for the modes [ = 2, 3, 4, obtained
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by this Prony procedure and the results of S. Chandrasekar, S. Detweiler
(C.D.) [4] and E. Leaver [8] who applied stationary approaches. The third
values of C.D. for [ = 3, 4, seem to be numerical artefacts.

table :gravitational waves,s=2.

Prony C.D. Leaver

=2

0.74734349, 0.17792462
0.69342, 0.54783

0.60, 0.95

0.74734,0.17792
0.69687, 0.54938

0.747343, 0.177925
0.693422, 0.547830
0.602107, 0.956554

=3

1.198887042, 0.185406087
1.165288, 0.562596
1.1034+2.107* 0.9598+2.107*
1.02, 1.38

1.19889, 0.18541
1.16402, 0.56231
0.85257, 0.74546

1.198887, 0.185406
1.165288, 0.562596
1.103370, 0.958186
1.023924, 1.380674

=4
16183578804, 0.1883279128-

1.5932642, 0.5686687
1.5455, 0.9598
1.477+2.107%, 1.367+2.10°3

1.61835, 0.18832
1.59313, 0.56877
1.12019, 0.84658

1.61836, 0.18833
1.59326, 0.56867
1.54542, 0.95982
1.47967, 1.36785

To conclude, we note the great accuracy of the Prony procedure for the
computation of the first resonances and we constat an excellent agreement
with the values obtained by E. Leaver. As regards the computation of high-
overtone normal modes, the efficiency of this method is limited by the fast
decay of the modes associated with a resonance with large imaginary part.
The numerical experiment on super computer CRAY2 is in progress.
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