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INTRODUCTION

The purpose of this paper is to expose the recent results of
global existence for non linear Dirac equations or Dirac-Klein-

Gordon systems in both cases where blow up can generally occur : 1)
if the order of the non linearities is critic with respect to the
space dimension ; 2) if the Cauchy data is large. More precisely

let’s consider an hyperbolic symetric system
£(3,,3,)¥ = £ (W), xXER® (1)
where

[f@)l = o(lwl%, vl » 0

+If we want to obtain global asymptotically free solutions
of (1) for small initial data, we expect that the energy
contribution of f(¥) is finite, i.e.
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We test estimate (R) with regular wave packet free solutions of
£(3,,8,)¥,=0 which satisfy"
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therefore,
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then the case of gquadratic non linearities in Minkowski space R3*!
is critic and we know that the local solution can blow up [10]. So
it is interesting to find bilinear interaction f such that



@, (), 5 €LY (Ry). (3)
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We know that a sufficient condition for (3) is that f is
null on the kernel of the symbol of £ it is the algebraic
condition of compatibility of f with &€ introduced by B. Hanouzet
and J.L. Joly (91 (and so [1]) which is related to the Lorentz
invariance and the Null Condition of S. Klainerman [13]. We study
these notions in part I and apply them in part 1II to solve the
global Cauchy problem with small initial data for the
Dirac-Klein~-Gordon systems

-iy*9, ¥+My = f (e,¥), MZO

(4)
Oe+mie = g(e,¥), m>0
Now, if we take large initial data, we cannot expect that (R)
is verified and in fact all cases can occur : global existence,
blow up or stationary solutions, even for d=3, n=3 ; for instance,

M. Balabane, Th. Cazenave, A. Douady, F. Merle prove in [8] the
existence of infinitely many stationary states for

—iY*A, MY = (Y.Y)Y , MZO (5)

and we establish in part IV the existence of global asymptotically
free solutions to systems generelising (4) and (B) for arbitrarly
large initial data under two algebraic assumptions on the non
linearities and on the polarization of initial data : on the one
hand we suppose that the systems are Lorentz invariant, and on the
other hand, we consider initial data satisfying an approximated
Lochak-Majorana condition. We study in part III +this last
condition which implies that the chiral invariant is small ; then,
the Lorentz-invariance implies that the non linearities are small,
and () is true again and we obtain the global existence and the
asymptotic freedom. The complete demonstrations are published in
[21, [31, [4].

I - COMPATIBILITY - LORENTZ~-INVARIANCE - NULL CONDITION
We specify some notations g'’''=diag(l,-1,-1,-1) is the
Lorentz metric on Minkowski space R*=R,xR3, x°=t, (x',x%,x%)=x. The
Dirac matrices v*, O<u<3, satisfy the relations
7“7v+7v7":2gu’vl , i“:g"’“r“
where A notes the conjugate transposate of matrix A. We introduce so
the matrix y¥=-iy°yly?y?.

We consider the generators (I',) ,¢,c;0 Of Poincareée group

(Fa)1<a<10 = (au: a/ax“, Qu,v:xuav—xvau)o<u,u<3



The Lorentz invariance of the wave equation is expressed by the
commuting relations

(r,,01 =0
To study the Dirac system we introduce
(fa)1<a<1o = B, Y LY ) scu, vea
which satisfy
(f,,-i¥*3,1 = o

In the case of massless fields, we can use the scaling invariance
with the radiation operator I',

I =x*3

o K

[o,r,1=20, [-i¥*3,,T, 1=-iy*d,

We recall some definitions

i) A sesquilinear form f on CF is said compatible with a first
order differential system
a 3
A@) =) A +iB
i=1 dx

where A; and B are PXN matrices with constant coefficients if

n

VEER™\{0}, VEKer( ) &;A;+B) » £(V,V)=0
j=1

ii) A sesquilinear form N(¥;,¥;) on C!'°xC'%® satisfies the null
condition if Yy ,€C!' (R*,C*), ‘v, =@}, vl . vd,ut), vi=@ ¥ Docucss

AEN
V(X,)€ER*,g***X,X,=0 3 Vh,k, ) - X,X,=0
0Kl 33,0133, uk)

iii) The spinorial representation of the whole Lorentz group 0(3,1)
is the mapping :

L=(L})€0(3,1) » A€SL(4,C)/{-1,1},

defined by

We note DO(3,1) the orthochroneous proper Lorentz subgroup.
The compatible forms for massless Dirac system are described by the
following



THEOREM 1.1 -~ Let f be a sesquilinear form on C*% ; the following
assertions are equivalent :

1)  Yy,€C*, VLEDO(3,1), fCAV,,AU,)=f (W, ,¥,).
2) f is compatible with the massless Dirac system £ =-ivy"*3, .
3) NQU,,¥,)=f(2,¥,,2 ¥,) satisfies the null condition.
4) ac»o, Ve ,€C! (R*,C*),
INQOT W) ISCCL+ It +]x])™"  sup [T 0, Ctox) [ IT ¥, (t,x)] (6>

0o ,1<10

5) Ja BEC/L (W, ,W,) =0, (¥ +BY°¥5)y, .

If the mass is non null we must avoid I', and the is only one compa-
tible form.

THEOREM 1.2 ~ Let f be a sesquilinear form on C% ; the following
assertions are equivalent :

1) Vu,EC*, VLEO(3,1), f(AW,,A¥,)=(detl) FQ¥,,¥,).
2) f is compatible with the mass Dirac system QM=-ix"8u+M, M#0.
3) NQU,,0p)=f(L, W, ,2 ¥,)+g" " £(d,¥,,3,¥,) satisfies the null
condition and
INQULH¥) ISCQL+ItI+]x)7Y  sup [T ¥, (t,x) T v, (t,x)]. 4]

10, 1t<10

4)  Ba€C/f U, ,¥,)=av ¥y v, .

It is crucial that the radiation operator does not appear in estimate
(7). The estimates (6) (7) play a fundamental role in our study : if
Y; are regular wave packet free solutions (6) (7) imply

INQ@L,e) I, 4 =0t %) ,a=2 if M=0, a=5/2 if M#0 ,
L (R )

X

instead of az=l1 if M=0, a=3/2 if MZ0, for ordinary product.
IT - GLOBAL SOLUTIONS FOR MASS AND MASSLESS FIELDS INTERACTING.

We consider system (4) with gquadratic nonlinearities

-iy*3, wtMy=eVy, (8.1)

Oe+m® o=y Fy (8.2)
where V and F are 4X4 matrices with constant coefficients. If both
masses M and m are non null, the uniform decay is fast enough to
assure the global existence [1R2]. If both masses M and m are null,
the conformal invariance allows us to use Penrose transform and to

obtain global solutions [7]. The interesting case is
MZO0 , m=0 (9



We make two algebraic assumptions on the nonlinearities

~ ~

vy°=y°V, F=F, (10)
F=igy°y®, g€R 11)

(10) implies the conservation of the spinorial charge and (11) has
two equivalent interpretations according to theorem I.2 :  is a
pseudoscalar Lorentz invariant field ; F is compatible with the
mass Dirac system. The main example is the Yukawa model of nuclear
forces with the interaction lagrangien ig¢$w°7’w.

We choose small very regular initial data

W (0,x)=ev, (x),»(0,x)=€p, (x),3,0(0,x)=€p, (X),
v, €D (RY,C*) ,0,€D(R],R), 0<E . (12)

THEOREM II1.1 - Under hypotheses (9)(10)(11), there exists & >0 such
that for €€10,¢, [, the Cauchy problem (8)(12) has a unique solution
(W,e)EC® (R*). Moreover (¥,9) is asymptoticaly free : there exist u¢°*
¢! satisfying

-iy*"3, v +My*=0, Op*=0
Lim (uctd)=u* )l 5 5 + ) 13,0C(t)-3,0 D) , 4, =0 .
L

t~to L (R ) w=o0

In fact ¢ has even a nice behaviour in L%-norm

¢,<p’EC°([R,L2(IR3)),II<p(t)—§0’(t)ll 2 3 __)0; t 9 to. (15)
L (R )

X
The key of the proof of theorem II.l1 is the compatibility of F, (11)
which allows to transform the nonlinear wave equation (8.2) into a
better wave equation

O(p+ (M) “2PFY) =N (@’ , U’ ) +@
where N satisfies the null condition and (7) and & is cubic.
An interesting question is the necessity of (l11) to solve the global
Cauchy problem. We show that we can replace (11) by

V=igy3, g€R . (14)

We point out that, if system (8) comes from a lagrangian, then (1l1)
and (14) are equivalent and we find the Yukawa model again.

THEOREM I1.2 - Under hypotheses (8)(10)(14), the conclusions of
theorem I1I.1 hold again.

But in this case ¢ has not necessarly a good behaviour in L¥-norm ;



we prove only [fe ()| . 3 =0 (t%). This time, algebraic condition
L

(R )
x

(14) is used to transform equation (8.1)
(O+M*)yw=-g (3,¢) v ¥ P+cubic

and we note that in the quadratic part, ¢ appears only with the first
derivatives which are easily estimated in L?.

III - CHIRAL INVARIANT AND MAJORANA CONDITION

To estimate a Lorentz-invariant non linearity F@y°y,ivy°y°v),
we introduce according to G. Lochak [14] the chiral inwvariant of ¥,
p(¥) defined by

92=|@Y°w|2+|@Y°XSWI2.

We are concerned by the spinors ¥ for which the chiral invariant is
null. In the case of a free solution of the linear Dirac equation,

a necessary and sufficient condition to p=0 is the Majorana condi-

tion generalized

3z2€C , |z]|=1, w=zylp*,

where ¥*' is the complex conjugate of ¥ and we have choosen the Dirac
matrices in order to ¥? is symetric

We have the same result for the Dirac systems with a time dependent
potential A

-1y*3,v=Av (15)
where A satisfies

A,93,AELS, (R, ;L (RI;RId+iRY®)) . (18)
PROPOSITION III.1 - Let ¢ be a solution of (15) and WEC°(R,,(LE(RIN)*
Y(0,x)=y,(x). Then the following assertions are equivalent :
iy 3z€C, lz|=1, v, =zv2¢} ;
1i) Vx€R®, o(w, (x))=0 ;
iii) VYCt,x)ER*, p(uW(t,x))=0 ;
iv) V(t,x)ER*, 32€C, |z|=1, w{t,x)=z¥%v*(t,x).

For z=1, the implication i) = iv) was proved by J. Chadam and
R. Glassey [81].



IV - GLOBAL EXISTENCE OF LARGE AMPLITUDE SOLUTIONS

First, we consider the mass Dirac-Klein-Gordon system in
Minkowski space R3*!

-1y 3, W+ MU= VY +F (Y, 1By W) v,
[ am
O¢+m®o=G By, 10y Y) -ke?
where the masses M and m are non null
MZ0, mz0. (18)
We define the vector space M of 4X4 matrices
m={al+iBy%, a,BER).
The hypotheses on the non linearities are following
vea (19)
FEC® (R®, ), |F(u,v)|=0(jul+ivi),|ul+|v]|=20 (203
GEC® (R*,R), |G (u,v)[=0(Jul+{vI]),|ul+|v]|=0 (21)
k20 (RR2)
¥ notes the usual Dirac conjugate
PEAE (23)

Many models of the relativistic fields theory satisfy these hypo-
theses ; the scalar and pseudo-scalar Yukawa models of the nuclear
forces, the interactions of Heisenberg, Federbusch, the magnetic
menopole of G. Lochak.

We choose arbitirarly large Cauchy data in a neighboorhood of decou-
pling data for which the chiral invariant is null

] = ¥, +ed, , O<eg, (24)
t=0

v,, Y, €DRI, CY), (25)

Y, =zy?¥ |, z€C , |z]=1, (26)

@ =¢, , 8,9 =0, (27)
t=0 t=0

?,, 9, €DRI,R) . (28)

¢

According to proposition III.1l, assumption (26) implies that ¥ 6 is
a decoupling data : for &=0, the scalar field ¢ does not depend on
» and ¥ satisfies a linear equation. So we solve the Cauchy problem
in a neighbourhood of such a solution. Remark ¥ 6 and scalar field ¢
can be as large as we want.



THEOREM 1IV.1 - There exists &, such that for any 0<é<é, the Cauchy
problem (17) to (28) has a unique solution (¥,e¢) in C*(R*). Moreover,

this solution is asymptotically free : there exist ¥', ¢' satisfying

Y'EC (R, , C(LE(RIY)*), ~iv*d u'+Mp*=0,
9 €C° (R, ,H* (RI)DNC* (R, ,L2(RI>),O¢* +m?p*=0,

Lim e Ctd-u (E)fl ,+lle(td)=0 (t)) ;+I3,e(t)-3, 0" (t)] ,=0.

t- ta L H L
This result shows how complicated is the problem of large amplitude
solutions : indeed, we have obtained large solutions asymptotically
free but we know that there exist so stationnary solutions for V=0,
F @, ey*v)=dy, [5].
Now we consider the non linear massless Dirac system

-iY*3,w=F Gu,ivrSwvv, (29)

and F verifies (20).

The global Cauchy problem for small initial data was solved by J.P.
Dias, M. Figueira [8]. Here we choose larga data satisfying (24) (25)
(R6) .

THEOREM IV.2 - There exists £,>0 such that for any 0<é<é,, the Cauchy
problem (28)(24)(25)(26) has a unique solution ¥E€C®(R*) which is
asymptotically free : there exists y* verifying

P ECO (R, , (LE(RIH)*)>, -iv*d, v*=0,

lim [ (td)=v' (t)] ,=0 .

t— to L
Moreover ¥ and the free solution have the same decay inside the light
cone : for 0<C<l

RAGI NI =0(1t] %) . (30)
L (etixi<Clitid)
(30) is a consequence of the important fact following : let’s consi-
der & defined by

d=x,¥"y . (31)

Then & is solution of a non linear wave equation which allows us to
make convenient estimates and we have

[@Ct)l ., 45 =0(It]™ %) (32)

L (Rx)
that proves (30).
Now we want point out the remarkable properties of asymptotic beha-
viour of relativistic quantities Ew and Exaw. We use another charac-
terization of the compatibility of a sesquilinear form with the mass-
less Dirac system : the factorization formula of B. Hanouzet and
J.L. Joly [91]



PROPOSITION IV.1 - Let f be a sesquilinear form on C* ; the following
assertions are equivalent :

i) f is compatible with the massless Dirac system —ix“a“ H

ii) there exist 4X4 matrices P(x"),Q(x*), homogeneous of order -1
such that
£QW,v)=8Py+yQd, (33)

where & is defined by (31).

Theorem I.1 and (32) (33) allow to obtain for non linear system (29)
a strong result of equipartition of energy which is well Lknown in
the linear case [1] [11]

THEOREM 1IV.2 - Let ¥ be the solution of (29) given by theorem IV.1.
Then the relativistic quantities satisfy :

[t WY , 5 +1VCY3 )] , 5 =0CIt] 1),
L (R ) L (R )

YWY | o 5 +IBCEI¥SwCtd ., 5 =0Cit] ™).
L (R ) L (R )

We can prove by the same methods the existence of global solutions
for massless Dirac equation with cubic relativistic nonlinearity in
two space dimension.

CONCLUSION

If we consider mass and massless fields interacting in
Minkowski space, there are two difficulties : on the one hand the
mass breaks the conformal invariance and we cannot transform the
global Cauchy problem in R¥**'! into a local Cauchy problem on S*xR
by using Penrose transform. On the other hand, the uniform decay of
massless field is a priori only t-! and the energy of gquadratic
nonlinearities does not decay fast enough to assure the global
existence.

Nevertheless, we have proved that the global Cauchy problem
with small data is well posed for the mass Dirac system quadrati-
cally coupled with a massless scalar field if the nonlinearities
satisfy the algebraic property of compatibility with +the Dirac
system, related to the Lorentz invariance and the null condition.

If the initial data are large, some blow-up can occur or
certain stationnary solutions can exist. In the case of the mass
Dirac-Klein-Gordon system with quadratic nonlinearities or the
massless Dirac system with cubic nonlinearity, we have proved the
existence of global solutions asymptotically free, for arbitrarly
large Cauchy data under two assumptions : on the one hand the
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nonlinearities are Lorentz-invariant, on the other hand the pola-
rization of initial spinor satisfies a generalized Majorana
condition ; then the nonlinearities are small again and decay more
fast than an ordinary product.

Therefore we constat that in critic cases, quadratic
nonlinearities in three space dimension, or large initial data, we
can obtain global asymptotically free solutions under algebraic
hypotheses on the nonlinearities and the Cauchy data.
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