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INTRODUCTION

The purpose of this paper is to prove the existence of
some global solutions, with targe energy, of Dirac-Klein-Gordon
systems with quadratic coupling and cubic autointeractions in
Minkowski space. We know that some algebraic conditions on the
nonlinearities, allow to solve the global Cauchy problem for
classical fields with smatt initial data [2] [9] the notion of
compatibility of a product with a differential system, introduced
by B. Hanouzet and J.L. Joly [5,6,7], and the null condition of
S. Klainerman [9] These both conditions are related to the
Lorentz invariance.

In this work we show that the global Cauchy problem is
wellposed again for arbitrarly large initial data if the non
linearities and the data satisfy some algebraic properties; more
precisely we assume the system is Lorentz-invariant and the
polarization of the Cauchy data is such that the chi rat invariant
is small.

Let' s the mass Dirac-Klein-Gordon system in
Minkowski space with Lorentz metric g.,,=diag(l, 1, 1,-1)

-i1·a.l/J + Ml/J = f('P,l/J) , (1)

We suppose the masses are non null

M ;t 0 , m ;t 0

(2)

(3)
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Now we introduce the Lorentz invariants

= conjugate of

and we define the vector space M of 4x4 matrices

The hypotheses on the nonlinearities are following

where V is a 4x4 matrix with constant coefficients and

VEM, FEC= (1R 2 ,M), IF (u,v) 1=0 (Iul+lvl), l u j r l v ].... O

where k is a real constant and

GEC= (1R 2 ,IR), IG(u,v) 1=0 (Iul+lvl), l v l r l v I.... O

Obviously, to obtain large solutions, we must assume

(4)

(5)

(6)

(7)

k 0 (8)

Many models of the relativistic fields theory satisfy these hypo
theses : the scalar and pseudoscalar Yukawa models of the nuclear
forces, the interactions of Heisenberg, Federbusch, the magnetic
monopole of G. Lochak.

Now, we recall that J. Chadam and R.T. Glassey established
in [4] the existence of global solutions to the scalar Yukawa
model, for which the Dirac system and the KleinGordon equation
are decoupled and

Here, we solve the global Cauchy problem for (1) - (8) in
a neighborhood of such a decoupling solution. More precisely, we
choose

=1[I.+<:"X.
t = 0

1[10' "X.El?l>(IR; ,(4)

, 0<<: (9)

(l 0)



'PI = 'Po. 8 t'Pl
t • 0 t

,IR)

'Pi
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(11 )

(12)

The algebraic hypothese on the polarization of Vo is

where

(13)

(13) is Majorana's condition generalized by G. Lochak [11].
In the first part we prove condition (13) is time independent for
the solution of a Dirac system with scalar or pseudoscalar time
dependent potential.
In the second part we make energy estimates and uniform decay
estimates in Sobolev spaces associated with Lorentz metric for
the nonlinear Klein-Gordon equation

O'P + 'P = -'P 3

We solve global Cauchy problem (1) - (13) in part III
asymptotically free solutions.

I - CHIRAL INVARIANT OF DIRAC FIELD.

We consider a solution of the Dirac system

where the time dependent potential A satisfies

we obtain

(14)

(15 )

Following G. Lochak [Ill we introduce the chiraZ invariant of
p

(16)

We are concerned by the solution for which the Chiral invariant
is null.
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PROPOSITION 1.1 :

Let liJ be a solution of (14) and liJEC o (fR, (L 2 4) ,

liJ I' = 0 =liJ o E (L 2 (fR ) ) 4 .

Then the following assertions are equivalent :

(iii) 'v'(t,X)EfR 1 + 3
, p(liJ(t,x)) = 0

Proof We use the bispinorial representation of Weyl by putting

e
liJ = ( ), e,7)EIe 2

7)

We verify easily that

liJliJ = e+7)+7)+e , Wy =

Therefore P=O if and only if

This condition is equivalent to

(17)

zEIe Izl=l

By using (17) we see that this equality means

and we conclude that

(18)

Now it is obvious that it is sufficient to prove (ii) = (iii)
for with compact support. Equation (14) can be
written

3

aoliJ+ L yOyiailiJ+iMYOliJ=iyOAliJ
i = 1

(19)
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By multiplying (19) by we find

3

a0 I I 2 + L a j (i'P r 0 ¥ j = 0
j = 1

We integrate (20) over and we obtain the charge conservation

f I (t • x ) I 2 dx = cst . (21 )

Now we multiply (19) by is the transposate of and it
follows

3

a, + L a j O.
j :: 1

We integrate over again and we obtain the conservation law

f t (t , x) ¥ 2 (t • x) dx = cst
1R 3

Let z be a complex number of modulus one. We have

Then we have thanks to (21) and (22)

(22)

f I (t , x ) - z ¥ 2 + (t, x) I 2 dx = cst (23)

1R 3

By (18) and (23) we conclude that is equivalent to
Q.E.D.

II - ESTIMATES FOR THE NONLINEAR KLEIN-GORDON EQUATION.

We define the Sobolev norms associated with the Lorentz
metric; for any test function uE@(IR,xlR;) and any integer N, we
put

L
IAI"N

IIr A u ( t ) 112
2 3

L (R )
x

(24)

Sup IrAu(t) I 3

I A I "N L (R )

(25)
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where

A A

fA=f 1
1 ... ,

and (fa) 1<a<10 are the generators of Poincare group

a
(f a ) 1 < a < 1 0 = (a.=

We will writte so

ax·

(26)

In this part, our purpose is to estimate with these norms the so

lution u of the nonlinear KleinGordon equation

Du + u = _gu J, ,

PROPOSITION 11.1 -

(27 )

(28)

The solution u of (27) (28) satisfies for any integer N :

Sup lIu(t)llN < +0)
tEIR

Sup (l+ltl)J/2Iu(t)IN < +0) .
tEIR

(29)

(30)

Proof
PN :

First, we prove by iteration on N the following assertion

{

t h e r e exists dN>l such that

Sup (lIu(t)h+llu' (t)llN+(l+ltl)
tEIR

where u'=Ca.u)o<.<J

d

N I u (t) I N _ 1 ) <0)
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Recall the result of C. Morawetz and W. Strauss [12]

Sup O+ltl)3/2lu(t)lo < +00 (31)

tEIR

Now we note QN an element of order of the Lie algebra spanned

by the generators of Poincare group

QN = L cAr A, CAEt, AEIli ' O,
finite

The Lorentz invariance of the Klein-Gordon equation implies

It follows

lIu(t)lI ,+lIu' I:ds)

and by using Gronwall's lemma

Sup (lIu(t)II,+llu' exp(cfIU(S)I:dS)
tElR

(32)

(33 )

We conclude by
(P N) is proved

(31) and (33) that
we have again

is verified. Now, assume

and thus

lIQN+1 U(t) 11 0 +lIQNtlU' (tHo (u ") (s)llo ds).
o

We note

3

QNtl(U 3 ) = L {(QN+1U)U2+(QNU) (Q, U)U+ IT (Qp u)}
finite j j

where

3

Pj N-l , L Pj N+l
1
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and then

IIu 3 (S) IIN t 1"C (II u (S) IINtil u (S) I =+ IIu (S) IIN _ 1 I u (S) I - 1

+ L IIQNu(s)II 4 3
finite L (I )

·II Q, u (s lll 4 3
L (I )

·Iu(s) 1 0 )

Thanks to the Sobolev injection H' (P,) and (P N) we

find.

IIu (t) II N t 1 + IIu ' (t) II N t 1"C (1 + If: IIu (s) IINt' (1 + I s I ) - d Nd s I )

and Gronwall's lemma gives

Sup (lIu(t) IINtI+lIu' (t) liNt') <+00

tE III

(34)

Now, we

Dv+v

verifies

recall that the solution v of

= 0, vl
t
:
o
= ° ,aovlt:o(X) g(x),

for 0"0:"1

Iv(t)l o"Cltl-"-(1-n(3/2)lIgll",,1 3 IIgll';7, 3
W (I) W (I)

Iv (t) lo"CIIgll 1,2 3
W (R)

where

IIg II n, p 3
W (I)

L
lalt;n

It follows that

I QNu (t) I 0 "c [ (1 + I t I ) - 3/2 + I 1 + Its I ) - " - ( , - " ) ( 3/2 )

(35 )

(II QNu
3(s)1I

1,2 3 +II QN
u 3(sJII",,1 3

W (I) W (I)

We write again

.II QNu 3(s)II';:, 3 dsl]
W (I)

3

QN(U 3 ) = L' {(QNU)U
2+(QN_'U) (Q,U)U+ IT (Q p u)}

finite j.I j

where

P j " N-2 .
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Then hypothese (PN) and (34) imply

- d

II QN(U 3) ( S )ll 1,2 3 1,1 3 N
W (R)nW (R)

x

and thanks to (34)

Sup liON (u ") (s) II 2,1 3 <+al
tE IR W (R)

The inequalities (35) (36) (37) yield

I u (t) I N C ( (1 + I t I ) - 3 / 2 + If: (1 + Its I ) - • - ( 1 - • ) J / 2 (1 + I s I )

We choose

a+ (l-a) (3/2) =adN>l

Thus

(36)

(37 )

d

N ds I)

C(l+ltl)
- d

N + 1

this ends the proof of (P N+ 1) To obtain the uniform decay of t- 3/ 2

we apply the estimate for the Klein-Gordon equation [2]

l u t t ) (l+ltl) -3/2 (l+f

lRII

u " (s) II N+4ds)

(P N+5 ) implies

- 2 d

lIu 3 (s) N+5EL 1 (IRs)

and we conclude that

Sup (l + I t I ) 3/2 I u (t) I N<+al

tEIR
Q.E.D
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III - GLOBAL EXISTENCE OF LARGE AMPLITUDE SOLUTIONS.

MAIN THEOREM

There exists eo>o depending only on the derivatives of

initial data 1ft ° , Xo ' <Po'<P' of order '10, such that for any
0' the Cauchy probl em (1) to (13) has a uni que so 1ut i on

(ljJ,<p) in Cm (1R 4
) . Moreover, this solution is asymptotically free

there exists ljJ', <p' satisfying

ljJ'EnC k (IR"H'O-k ,-i'l'·a.ljJ'+MljJ'=O ,
k

<p'Enc k (IR, ,H"- k ,O<p' +m 2 <p ' 0 ,
k

\:1kEIll, k

H H

where HS is the Sobolev space W" 2

k =0

Proof Let (1ft,4» be the solution of

Lochak-Majorana's condition (13) and Proposition I.l imply

Now we put

1JJ = 1ft+X , <p = 4>+u

(38)

(39)

( 40)

(41 )

(42 )

(43 )

and to solve the Cauchy problem for (ljJ,<p) we study the problem

-i'l"a,X+MX = f(X,u;'l',4» (44)

XI =exo
t = 0

,ul =0, a,ul 0
t = 0 , 0

(45)

( 46)
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where f and g are functions of its variables and verify

Ih(X,uj1jt,<p) 1=0 ((!XI+lul) (IXI+lul+I1jtI+Iit>I) (l+IXI+lul+I1jtI+Iit>I))

as

IXI+lul 0, h = f,g

As usual we define the sequence (XV ,UV) v>o by putting

X' • 0, u· .. °
and for lJ .. l

Du v +m2u v =g (X v - 1 , U v - 1 ; 1jt , it» ,

( 47)

( 48)

(49)

(50)

° . (51 )

To estimate the norms IIX v (t) h we replace in (24) (25) the opera-

tors (f.) 1 <. < 1 0 by the Fermi operators

(r.) 1 < • < 1 0 = (a", x" a v -x Va" " 'l' v ) 0 < " , " < 3

which define obviously equivalent norms, and commute with the
Dirac system. The commutation relations for r. the charge conser
vation for the Dirac system and the usual energy equality for the
Klein-Gordon equation imply

IIX" (t) IIN+llu" (t) IIN+II (u")' (t) liN :r;;

:r;; c [e+ If: (IIX v - 1 (s) II N+ II u " - 1 (s) II N)

XClX"-l (s) I [N/2J+lu"-1 (s) I [N/2J+I1jt(s) IN+I<P(s) IN)

x (l + IX" - 1 (s) I [ N/ 2 J + I u " - 1 (s) I [ N/ 2 J + 11jt (s) I N+ I it> (s) IN) ds I]

where

(u")' = (a.u")O<.<3

Following Proposition 11.1, we have
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We deduoe that

IIX' (t) IIN+llu' (t) II N+II (u " (t))' liN li;

li;[CtI(IIX'1(S)IIN+IIU'-'(s)IIN)

X(IX,-1 (s) 1[1I/2J+lu,-1 ( s ) I[N/2J+(1+lsl)-3/2)

We define for

an (t) = Sup (II'X' (s) IIN+llu' (s) II N+II (u' (s))' liN)

1s lli; 1t 1
Oli;vli;n

b n (t)= Sup «(1+lsl)3/2 (IX' (s) 1 [1I/2J+lu' (s) 1[N/2J))'

Islli;ltl

Oli; v li;n

(52 )

Inequality (52) oa n be written

an (t) li; C (Ct 1f: an _ 1 (s) (1 +b n _ 1 (s) ) 2 (1 + 1s 1) - 3 / 2d s I ) (53)

At present our L 2_L m estimate for Klein-Gordon equation [2J gives

1X' (t) 1[ N/2 J + 1u " (t) 1 [ll / 2 Jli;C (1 + 1 t I) - 3/2

f
2 t

(t+ 1 (IIX' -1 (s) II [N/2 J +4+lIu' -1 (s) II [1l/2 J +4)

o

X(IX'-1 (s) 1 [([N/2J+4)/2J+lu,-1 (s) 1 [([1I/2J+4)/21

+ 1 (s) I [ N / 2 J + 4 + 1q, (s) I [ N /2 1 + 4) d s I) .

We choose N such that

i . e .

N

[-J+4 li; N,
2

10 E; N .

[N/23+4 N

[ J li; [-J
2 2

(54)
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Then we have

b n (t) litC ce + IJ: tan 1 (s) (l +b n 1 (s) ) 2 (l + I s I ) - 3 / 2 d s I) . (55 )

Relations (53) and (55) show that if a n- 1 and b n- 1 are in
then an and b n are in (IR). Now a.=bo.O. then

\1nErti. an' b nEL7. c (IR) . (56)

We can apply the Gronwall lemma to (53) by noting an(t) and bn(t)
are creasing functions of nand t

where C is independing on n .
Let An. B n be

An = Sup an(t)
tEIR

(55) and (57) imply

B n = Sup b n (t)
tEIR

and we have

We choose O<e. such that

Ce (l +4C exp 4C) lit I

Suppose

(58) and (62) imply

An lit c e exp 4C •

and (59) and (62) imply

Bn lit C (e+4Ce e x p 4C).

(58)

(59)

(60)

(61 )

(62)

(63 )
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and thanks to (61)

(64)

We conclude by (60) (62) (63) (64) that

(65)

Now, the existence of global solution follows from classical method
(see e.g.[2]). At present we prove the asymptotic freedom. We note
respectively D(t) and U(t) the propagators associated to the free
equations of Dirac and Klein-Gordon

3

D(t)=exp it , = L i¥O¥jaj-M¥O
j =1

U(t)=exp it A , A = -i[ 0 0 J.
6., -m 2

,

To obtain it is sufficient to prove the convergence of
and U(-t) respectively in and

H 1 1 0 as t ... :too .

We have

+f\(-S)f('P(S) ,lJ,J(s))ds
toO 0 t

U(-t) I +f U(-s)
t =0 0

The propagators D(t) and U(t) being uniformly bounded on the
Sobolev spaces we have to prove only

II 1 0 3 4 ELI (JR.)
(H (I) )

x

(66 )

IIg('P(s),lJ,J(s))1I 10 3 ELI (JR.)
H (I)

We deduce from (65) that

(67 )

Sup{ II (t) 111 0 + II (t) 111 0 + (l + I t I ) 3 / 2 (I (t) I 5 + I 'P (t) I 5) ) <+00
t

We conclude that the norms in (66) and (67) are O«(l+ltl) 3/2)and
this ends the proof.



113

BIBLIOQRAPHY

[1] A. Bachelot, Equipartition de l'energie pour les systemes

hyperboliques et formes compatibles. Ann. Inst. Henri
Poincare, Physique Theorique, vol.46, nOl, 1987, P.45-76.

[2] A. Bachelot, Probleme de Cauchy global pour des systemes
de Dirac-Klein-Gordon. Ann. Inst. Henri Poincare, Physique
Theorique, vo1.48, n04, 1988, p.387-422.

[5] A. Bachelot, Global existence of large amplitude solutions
for nonlinear massless Dirac equation. To appear in
Portugaliae Math.

[4] J. Chadam, R. Glassey, On certain global solutions of the
Cauchy problem for the (classical) coupled Klein-Gordon-
Dirac equations in one and three space dimensions. Arch.
Rat Mech. Anal. 54,1974, p.223 257.

[5] B. Hanouzet, J.L. Joly, Applications bilineaires sur

certains sous-espaces de type Sobolev. C.R. Acad. Sc.
Paris, s e r i e I, t.294, 1982, p.745-747.

[6] B. Hanouzet, J.L. Joly, Bilinear maps compatible with a
system. Research Notes in Mathematics, 89, Pitman, 1985,
p.208-217.

[7] B. Hanouzet, J.L. Joly, Applications bilineaires compatibles
avec un systeme hyperbolique. Ann. Inst. Henri Poincare,
Analyse non l Ln e e.Lr e , vol.4, n04, 1987, p.557-376.

[8] S. Klainerman, Uniform decay estimates and the Lorentz
invariance of the classical wave equations. Comm. Pure
and Appl. Math. 58, 1985, p.521-352.

[9] S. Klainerman, The null condition and global existence to
nonlinear wave equations. Lectures in Appl. Math., vol.
25,1986, p.295-526.

[10]

[ III

[ 12]

S. Klainerman, Global existence of small amplitude solutions
to nonlinear Klein-Gordon equations in four space time
dimensions. Comm. Pure and Appl. Math. 58, 1985, p.651-641.

G. Lochak, Wave equation for a magnetic monopole. Int. J.
Theor. Phys. 24, nOlO, 1985, p.l019-1050.

C.S. Morawetz, W.A. Strauss, Decay and scattering of solu
tions of a nonlinear relativistic wave equation. Comm.
Pure and Appl. Math. 25, 1972, p.1-51.


