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Abstract

We introduce a class of four-dimensional Lorentzian manifolds with closed curves of null type or timelike. We investigate
some global problems for the wave equation: uniqueness of solution with data on a changing type hypersurface; existence of
resonant states; scattering by a violation of the chronology; global Cauchy problem and asymptotic completeness of the wave
operators for the chronological but non-causal mettic2002 Editions scientifiques et médicales Elsevier SAS. All rights
reserved.

Résumé

On considéere une classe de variétés lorentziennes de dimension quatre, admettant des courbes fermées de type nul ou de
genre temps. On étudie quelques problemes globaux pour I'équation des ondes : unicité de la solution avec données spécifiées
sur une hypersurface de type changeant ; existence d'états résonants ; diffusion par une violation de la chronologie ; probléme

de Cauchy global et complétude asymptotique des opérateurs d’onde pour des métriques chronologiques mais non causales.
O 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The theory of the linear waves equations on globally hyperbolic manifolds has a long history since M. Riesz and J. Hadamard.
It is impossible to cite all the important authors in the area, but we mention the fundamental works related to our study:
the Cauchy problem investigated by J. Leray [25] and Y. Choquet-Bruhat [5] (see, e.g., the excellent monograph [10] by
F.G. Friedlander), the scattering theory for a compactly supported perturbation by P. Lax and R. Phillips [24], the microlocal
analysis of the solutions by L. Hérmander [18] and J.-M. Bony [3].

In opposite there are few works on the global hyperbolic problems ondhglobally hyperbolic spacetimes. Nevertheless
the global hyperbolicity is an extremely strong hypothesis, which is not satisfied by a lot of solutions of the (in)homogeneous
Einstein equations. The origin of the loss of global hyperbolicity can be a non-trivial topology, an elementary example is
S,1 X ]Rig endowed with the Minkowski metric. Other examples are the Lorentzian wormholes [11,35], but since they lead to
violations of the local energy conditions, these models are somewhat exotic. A deeper raison is linked with the non-linearity of
the Einstein equations that can create some singularities of curvature, and also some closed time-like geodesics. In particular,
the violation of the causality can be due to a fast rotation of the space-time that tilts over the light cones so strongly that some
closed causal curves appear. This phenomenon is present in several important Einstein manifolds: the Van Stockum space-
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time [32], the Godel universe [14], the Kerr black-hole (third Boyer—Lindquist block and fast Kerr) [23], the spinning cosmic
string [8]. These Lorentzian manifolds belong to a wide range of stationnary, axisymmetric spacetimes that are described by the
Papapetrou metric [28]

g e dr” = A(r, )[df — C(r, 2) dg]? — [2de? + B(r,2)(dr? +dz?)], 0<A4,B, 0<C, (1.1)

A(r, 2)

on some 3Bt 1 manifold M.
Our model consists by choosingt = R4 A=B=1,and for simplicity we assume thétis compactly supported. When
we allow thatC (r, z) > r (resp.C(r, z) = r) for some(r, z), someclosedtime-like (resp. null) curves appear and this spacetime
has the same properties that the previous Einstein manifolds of point of view of the causality. We investigate the wave equation:

2

1 1 C
|detg| ™29, (|detg|2g" 0, )u = (1— —

C
rz)a,zu—Axu—zr—zatawpo. 1.2)

We also consider the zero-order perturbation of the D’Alembertian by a potential, for instance the conformally invariant wave
equation. Obviously the study of the solutions is difficult because of the presence of closed timelike/null curves: there exists
no global Cauchy hypersurface. We can see how much intricated is the situation by formally expanding a solution of (1.2) in
Fourier series with respect {a

. _
u(t, .1, 2=y r 2up(t,r, 7)€",

mez
Thenu,, is solution of a changing type equation:

c? e m?
(l— —2>3;2Mm — (8,2 + 812)14,,1 — 2Imr—281um + r—zum =0,

r

which is hyperbolic o{C < r}, elliptic onT := {C > r}, and of Schrddinger type ob := {C =r}. In particular,
My, = {t =19} x RE

is not a Cauchy hypersurface for (1.2) whEris not empty. Another crucial point is that singeis a Killing vector field, there
exists a conserved current for the sufficiently smooth solutions of (1.2):

2
E(u) = }/<1— C—2)|a,u(z,x)|2+ Vu(t, x)|? d.
2 r
]R3

But this energy isiot a positive form when the manifold is not chronologic@l£ 7).

We briefly describe our results. In Section 2, we investigate the causal structiutetiodt is not globally hyperbolic when
X # ¢, and totally vicious wherT # ¢. We introduce the concept dfon-Confining that is a non-trapping type condition,
expressing that there exists no null geodesic included fmMy,.

We study the properties of the solutions of (1.2) in Section 3. Sipds a Killing vector field, there exists a conserved
energy, and it is natural to consider solutionsuch thatV,u € L%C(Rt, LZ(RE)). WhenT =# @, the energy is not non-negative
and there is no control af;u on X. Nevertheless, if the Non-Confining condition is satisfied, the microlocal analysis allows
to prove an unexpected regularityu € L2 (R;, L>(R3)). Thanks to this key result, the tracesioand (1 — £)3;u on M;,
are well defined, and we may establish a uniqueness theorem which is not a consequence of the classical results of Calderon or
Hormander, sincé/;, is not non-characteristic, antl is nowhere strongly pseudo-convex.

In Section 4, we look for the solutions of typet, x) = € v(x), andv satisfies an outgoing condition. We prove that the
set of resonances € C is discrete, and whefi # @, there exists a sequence of resonances)y) — oo with v € LZ(R;?).

Of physical point of view, this last fact means that the metric is instable, and partially justifies the conjecture of chronological
protection of S. Hawking [16].

In Section 5, we construct asymptotically free global solutienwith data of type regular wave packeis, , given at the
null past infinity. Moreover is asymptotic to a regular wave packaﬂo*t ast tends to+oo. The scattering operatdr. ugy ua_,
is a well defined isometry, even if the chronology is violat&d4 ¢), but in this case the wave operaigf — u is not causal.

We investigate the link between the resonances and the poles of the meromorphic continuation of the scattering matrix.

In the last section, we consider the case wheteds chronological T = @), but non-causalX # #). The global Cauchy
problem is well posed for a whole Hilbert space of finite energy data, including those vanishibg Mioreover the local
energy decaies, and we can prove the existence and asymptotic completeness of the wave operators describing the scattering by
a violation of the causality. Althougi is not causal, the scattering operator is causal.
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It is without saying that this work is only a first incursion in the mathematically widely unexplored domain of the
field equations on the non-globally hyperbolic manifolds (for a rather significant bibliography of the physical literature see,
e.g., [8,10,12,13,16,22,33,35]). We have not dealed with many important questions such that: the asymptotic repartition of the
resonances; the singularities of the scattering kernel; the existence of a “trace formula” making a link between some geometric
quantities (e.g., the lenght of the closed null geodesics), and the spectral numbers; the Strichartz type estimates, etc. Last but
not least, the field of the nonlinear wave equations on a non-causal space-timea iacognita

2. Geometrical framework

We consider the topologically trivial manifold:
M= R?XO,xl,xz,xs) =R, xR3 (2.1)
endowed with a Lorentzian metricwhich is equal to the Minkowski metric outside a torus
R x {(xl,xz,x3); 0< rE < |x1|2 + |)c2|2 < r_%_, < x3 < Z+}.

We choose a particular case of the Papapetrou metric:

guw et de¥ = dr? — [r2 — C2(r, 2)] dg? — 2C (r, ) dr dg — dr? — dz2, (2.2)
where we have used the cylindrical coordinate®, r, z) € R x [0, 27 [x [0, oo[ xR given by
x1=rCOS(p, x2=rsin(p, B=z (2.3)

We assume thaf satisfies
0<C(r,2),C e C3(R?), (r,2) ¢ [r—, r4]1 x [z, 241 = C(r,2) =0, (2.4)

and our geometrical framework is given by (2.1), (2.2), (2.4).

We note that is a timelike coordinate an@\, g) is naturally time oriented by the continuous, nowhere vanishing, timelike
(and Killing) vector fieldd;. Moreoverr andz are spacelike coordinates. The interesting fact is that the nature of the Killing
vector fieldd, is ambiguous: the crucial point is thatis atimelikecoordinate wher€ > r, thus we introduce:

T =R xTp, To:=51x{(r2);Cr2) >0}, (2.5)
T := R, xTg, Tp:=5tx {(rn);Cr ) >r}, (2.6)
Y =R x Xy Xog:= st x {(r,z);C(r,z)=r>O}. (2.7)
We shall need the hypersurfaces
My = {1} x RS, (2.8)
Its causal structure is complex. Since its normaltistide nature of/; is locally given by the sign of

2

glt —1_ f_Z’

henceM; N (R3\ (TU X)) is spacelikeM; N X is null, andM; N T is timelike.
We shall be mainly concerned by the case whBris not empty. In this situation the causality is violated in a severe way:
givenmq = (tg, 0, 1o, 20), the path

T € R+ m(r) = (t9, o — 7, rg, 20) € M, (2.9)

is a future directed closed null curverify € X, and a future directed closed timelike curvenif € T since:

dm dm A2 2 dm d _
g(E’d_r>_C (ro, z0) — Qs g<a,§>—ZC(ro,zo)>0.
More precisely, the causal structure®f is described by the following:
Proposition 2.1. Let (M, g) be the Lorentzian manifold defined (1), (2.2), (2.4).

1) f ¥ =0, (M, g) is globally hyperbolic M; is a Cauchy hypersurface for amy R.
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(2) f T=dandX # @, (M, g) is chronological but non-causathere exists no closed timelike curve, but there exists a closed
null geodesic.
(3) If T#9, (M, g) is totally vicious, i.e. givemg, m1 € M, there exists a timelike future-pointing curve frorg to m.
Proof. (1) If ¥ =@, there existg > 0 such that
0<el= inf(r2 - CZ).
Lett e R~ m(t) = (t(1), ¢(1), r (1), 2(7)) € M be a nonspacelike smooth curve. Since
24 (C?—r?)g? —2Ci¢g—i?—:2>0, m#0,

{ cannot vanish, for instanedr) is strictly increasing. 1t (z) is bounded as — +oo, then? is integrable orRE. Moreover
we have:

. 2 . 4c2\ , 2
202 +i2+32<i?—2(Zci)lo < (14+ 5 )2+ E42
£ 2 g2 4

Thereforer, z, ¢ are integrable orR* and m(z) is an extendible curve. We conclude that3f = ¢, any inextendible
nonspacelike curve intersects exactly on¢ewhich is a Cauchy hypersurface. Therefaret, ¢) is globally hyperbolic.
(2) Now the geodesics € R +— m(t) = (t(1), ¢(7), r (1), z2(t)) € M are defined by the Euler-Lagrange equations:

d/aLy L
dr \axir ) dxn’
associated with the Lagrangian:
L:=i? 4 (C? - r?)¢% - 2Cip — % — 2. (2.10)

The timelike Killing field /3¢ and the axial Killing fieldd/d¢ yield a conserved energg, and a conserved angular
momentums2:

E
2

i—C@ 29, (2.11)
(C%(r,2) =) ¢ — C(r, 2)i. (2.12)

The two others geodesics equations are:

_ _(.Q-I—C;r,z)E)(EiC(r’Z)_.Q+C(r,z)E)’ (2.13)
r or r
5= _<79 +Cg’ Z)E>Eicu, 2. (2.14)
r 0z

Let (¢o, ro, zo) be in Xq. SinceT =@, C(r, z) — r < 0 everywhere, hence we have:
C(ro, z0) =10, 9rC(ro,z0) =1, 0;C(ro,z0) =0, (2.15)

and the path (2.9) satisfies (2.10), (2.11), (2.12), (2.13), (2.14); fe10, 2 = 0. Therefore it is a closed null geodesig“, g)
is non-causal.
Now we consider a future pointing timelike curve— (¢, ¢, r, z):

i>0, L>0.
We deduce that:
Therefore we have:

i>(@r—0)gl=0,

and the curve cannot be closéd«, g) is chronological.
(3) In order to prove thatM, g) is totally vicious if T # ¢, it is sufficient to construct, givem ; = (¢, ¢;,rj,z;) € M,
aCl-pieceWise curve frommg to mq. We considem.. = (t«, ¢x, r«, 2x) € T. First we define forg > 0

T €[0,1] > mo(r) = (to+ «ot. (1 — D)o + T@x, (L— T)rg + Trs, (1 — T)20 + T24).
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Sincery <ry, |z«| < supy |z, andC is bounded, we have:

|
g(mo, 5) = ag— A,

gl o) > ef — Alag— A",

where 0< A, A’, A” depend only ofg andzg. We deduce that foig = ag(rg, zg) large enoughig(z) is a future pointing
timelike path, frommg to m, o := (19 + @0, ¢x, %, z+) € T. By the same way we construct a future pointing timelike path
my(t), fromm, 1 := (t1 — @1, s, 7+, 2+) € T to m1. Now we show that there exists a future pointing timelike path(r),
fromm, g tom, 1. If 19+ g < 11 — 2 We put:

Px(0) = (1= 0)(to + @0) + T(11 — 1), P, 7, 2.
If 1o + ag > 11 — 1 We define fork € N:

p(1) = (1= 1) (to +ag) + T(t1 — 1), 95 — 2k T, ', Zx).
We have:

.0
g(p*,§> =11 — a1 —tg—ag+ 2w C(ry, %),

g(Ppx, Px) = (11 —a1—tg— ozo)2 + (Cz(r*, Zx) — r3)4k2n2 + 4k C (ry, z5) (11 — g — tg — Q).
SinceC (r«, zx) > rx We can choose large enough in order tp..(7) is a future directed timelike path. Finally we glug(t),
p« (1) and thenmq(7) to join mg to mq by ac? piecewise, future going timelike curve o

The previous proposition explains why, in the physical literature (see, e.g., [13[3&f)d X are respectively calledime
machine andvelocity-of-light surfaceThis last term is somewhat misleading sirtqgeVt \ T) C X, but it can happen that
d(M\ T) # X and X is not necessarily a hypersurface. If there existgmozg) satisfying (2.15), the theorem of implicit
functions immediately assures that is aCZ-hypersurface that is timelike because its normiVa& (3,C — 1)dr + 3;C dz
is spacelike sincg"" Ny, , = —(38,C — 12 - (E)ZC)2 < 0. Moreover, this is a sufficient and necessary conditiorCofor a
geometrical property of non-trapping type:

Proposition 2.2. Letm € C2(R;; M) be a path. Then the following assertions are equivalent

(i) m is a null geodesic and for sonfe> O:
m@R) C [T, +T]; x Xo, (2.16)
(ii) there existsg, o, r0, 20), » € R*, such that

C(rg,z0) =ro >0, arC(rg, z0) =1, 9;C(rp, z0) =0,

2.17
m(t) = (tg, 9o + AT, 10, 20)- 2.17)

Proof. We have seen that the path (2.9) satisfying (2.17) is a null closed geodesic inclubiggd Donversely, the equations
of a geodesic satisfying(R) C X are:

£ . 2 E

f=-—, - = =
r TR

Q E Q . 2 E
—(S+=2)|EGC-1)—=], i=—\—=+—)EoC.
r2 r r rz r

Thus (2.16) implies thaR = 0 since O< r— < r < r4. If m is also a null geodesic we have:
0=L=—72—32

H

hencer = rg, z = zg, and sinceE cannot be zero, we deduce tBaC (rq, zg) = 1, 3;C (rg, z0) = 0. In this case, the path (2.9)
is a null geodesic, therefore is given by (2.17). O

We say thatX is Non-Confiningf there exists no null geodesic included{ia} x X for somerq. Following the previous
result, a necessary and sufficient condition is:

C(rp.z0) =ro > 0= (3, C(ro. 20), 9;C (r0, z0)) # (1. 0), (2.18)

and in this case is aC? timelike hypersurface.
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3. Thewave equation

The D’Alembertian on a Lorentzian manifoloM, g) is defined by:
1 1
Og = |detg| ™20, (|detg|2g" V).

For the space-time given by (2.1), (2.2), we obtain:

C2 c
ug=<1—r—2)a,2—ax—2r—za,a¢, (3.1)

with
2= P+ i

More generally we consider the scalar perturbations of the massless wave equation, compactly suppoiedriant with
respect to the both Killing vector fields, d,,:

92 82 a2 a2 a2 2.2 1 1 2
C A= 04 05+ 0% =00+ 07+ 205+ 0, By =x"0,2 —x%0a.

L= Dg+v, (3'2)
where
vecdRER), 8,V =0 (3.3)
These assumptions are fulfilled in the important case of the conformally invariant wave equation for which:
1

whereR; is the scalar curvature @i\, g). We useRq > 0 be such that
Ro< x| == C(r,2) =V(x) =0. (3.5)

We know that the D’Alembertian on a Lorentzian curved space-time is strictly hyperbolic in a local sense (see, e.g., [10]).
The global hyperbolicity is more delicate. We denote:

Po(m, &) =g (m)Eusy, meM, & e TuM, (3.6)

the principal symbol of..

Proposition 3.1. (1) Leta be inR. Then,P>(m, -) is (strictly) hyperbolic with respect to the covectdr + « dy iff o satisfies
—C(m) —r<a<r—C(m). (3.7)
(2) If = 1, there does not exigt € C1(M; R) such thatL is hyperbolic with respect to the level surfacesrof

Proof. (1) Givent = (&,4,,4/,&;) € R4 a covectorN :=df + « dy, T € R, we calculate:

(C + a)?
r2 ’

2 2
Palm, & +TN) = [1— @]r% 2[(1— C—2>st ~ %St +s¢)]r
r r r

Py(m,N) = 1—

-
C?N\ o o .o 1., 2C
+ (1— r—z)sf & 88— e - S5EE,
The reduced discriminant of the equatiBp(¢ + tN) = 0 is equal to:
1 (C+a)?

A= r—Z(OlSt —&p)2+ |:1— T](Srz +$z2)-

We conclude thaP,(m, -) is hyperbolic with respect t/ iff [1 — (C:r—z‘)‘)z] > 0, and in the cas@,(m, -) is strictly hyperbolic.
(2) Let F be inC1(M; R). We assume that
VYme M, Pp(m, dF(m))#0, (3.8)
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and that for everyn € M and¢ € T,; (M) \ RdF (m), the roots of the characteristic equation

Pz(m, E+1 dF(m)) =0
are real. We considen € ¥ and we choosé = (¢, =0,&, =0,&;, &) € T,; (M) \RdF(m), &, &, # 0. We have:

1 2
Pa(m, & + T dF(m)) = 12[—|3,F(m)|2 - r—2|8¢F(m)|2 - ;atF(m)a(pF(m)]
— 2 (&0, F (m) + £:0.F (m)) — 7 — £2.

The reduced discriminant is equal to:

A=+ s§)<|atF(m>|2 - (

If (8, F(m), 3, F(m)) # (0, 0), the conditionA” > 0 impliesd, F (m) # 0. If 3, F(m) = 9; F (m) =0, we have

70t F(m) + 0y F (m)

r

2
) ) — 2], Fom)|? — £2]o, F(m)|?.

1
Po(m,dF(m)) = ——28¢F(m)(3¢F(m) + 2rd; F(m)),
r
hence we deduce from (3.8) thitF (m) # 0 again. Now ifm = (¢, ¢, r, z) € X, thenC,, := {t} x St x {r} x {z} ¢ ¥ and we
conclude thaby, F' # 0 onC,,. Obviously that is a contradiction.O

The previous result implies in particular that in the interesting case wihet#, the initial value problem fol. with data
specified onMy, = {rg} x R3 is not well posed. (3.7) shows that the failure of the global hyperbolicity is due to the very fast
rotation of the torus. Nevertheless, sirtgds a Killing vector field, it will be interesting to investigate the solutiond.af= 0
as some distributions dR;, valued in some spaces of distributions}mf\. In order to choose the functional framework, it is
useful to note that since the time translation leaves the wave equation invariant, the Noether’s theorem assures the existence of
a conserved current. We formally obtain the conserved energy

2
E(u;t) = %/(1— f—2>|atu(t,x)|2—|— Vu(t, )2+ V(o) |ute, )| dx. (3.9)
R3

Therefore it is natural to look for the solutions of
Lu=0, uelL? (R;W(RD)), (3.10)

wherer(Rﬁ) is the Beppo-Levi space defined as the completioﬁgﬁ‘f(Rf’;) with respect to the norm:

1£12,2 =/|Vf(x)|2dx, Vi="(0,1,0,2,0;). (3.11)
R3

We recall theL2-type estimate:

wi(R?) c L2(RD) = L2<R3

dx <K . 3.12
X 1+ lez >’ ”f”L/ZJ ”f”Wl ( )

The choice of the regularity @« is less clear wherM is not globally hyperbolic sincél — €2/r2) is negative ol and
the energy is not a positive form. We introduce the space:

2
L2(R3) = L2<R§, 1- f—z‘ dx>, (3.13)

and we investigate the solutionsf (3.10) satisfying:
du € Lo (Ry; LZ(RD)). (3.14)
With this functional framework, we define usefull quantities associated with the wave equation< f8r<Q oo, the local

energy ofu at timet is given by:

2
Er(u; 1) = % / <1_ f—z)|a,u(r,x)|2+ |Vu(t, )2+ V (o) |ue, )| dx. (3.15)
<R
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The Wronskian ofi, v is defined by:

2

W(u,v;t):= f(l— C—Z)(atu(t,x)v(t,x) — u(t,x)atv(t,x)) - %(%u(r,x)v(t,x) — u(t,x)a(pv(t,x))dx. (3.16)
r r

R3

Lemma 3.2. Givenu, v satisfying(3.10)and (3.14) we have folR > Rg, and almost alk, s € R:

ER(u,t) < ERyjr—s|(u,s), (3.17)
Eoo(u,t) = Eoo(u,s), (3.18)
W, vit) = W(u,vss). (3.19)

Whenu,v e COR,; WLRD)), 8u, 8v e COR,; LZ(RD)), (3.17), (3.18), (3.19) are satisfied for anyr € R, and the
conserved quantity

E(u):=Eco(u,t) (3.20)

is the total energy of. If T is not empty, this quadratic form is not definite positive.

Proof of Lemma 3.2. We choosé () € CSO(R,) such thatf 6(r) dr = 1. For j € N we put:
o0

uj(t)y=j / O(js)u(t —s)ds. (3.21)
—o0
v; is defined by similar way. Itis clear that; approximates::
uj—u in Lﬁ)c(Rl; Wl(Ri’)), Oruj — dru N Lﬁ)c(Rl; L%(Ri’)) asj — oo,
and we easily check that:
ER(uj,1)— Eg(u,1), W, vjit)— W, vir) inLp Ry, j— oo

Therefore it is sufficient to prove that (3.18), (3.17) and (3.19) are true fdor all ¢, s to get that these estimates are satisfied
for u and almost alt, s. For that, we note thalj is a solution, smooth by respectto

Luj=0, ujeC®R:WHRY),  8u; e C®(R; L2(RD)). (3.22)
Moreover, by using the equatidiu = 0 and the embedding of the Sobolev spaces, we have
uj € C(M. (3.23)

For such solutions, we may derivate the Wronskian or the total energy by respecarid by using the equation and an
integration by parts, we get (3.19) and (3.18) forrall. As regards the local energy estimates, we check that

O P* = (Luj)ou; =0,

where the Pointing vectaP is defined by:

C2
2P = (1—r—2>|a,u,~|2+|vxu,-|2+V|u,-|2,
X _ ¢ a -2 2 Y _ ¢ e -2 2 Z_ ¢ A
P = —Noujoxuj+ Cr “ylou;l, P’ =—Noujoyuj — Cr~“x|0ru;|°, P*=—0N0tujozu;j.
We evaluate

O=2/ duP*(t,x)drdx, onD={(t,x); x| <T —t+R},
D

and we get:

1 - X
Epsr(uj.0) = Ep(uj.T)=5 f |a,uj|2+|vxuj|2—2matujvxuj-mda>o. 0
|x|=T—t+R
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We could only consider solutions of (3.10) such that € L%C(Rt; L%(Rf{’)), but if Xg is Non-Confining,d;u is much
more regular:

Theorem 3.3. We assume thaXy is Non-Confining. Let be such that

ue LR WHRE)),  Lu e L (Re; L2(RY)). (3.24)
Then we have
du € LE (Ry; L2(R3)). (3.25)

Proof. We shall use the results of microlocal regularity and of propagation of singularities, which are due to L. Hormander [18]
whenC andV areC*, and J.-M. Bony [3] wher€ andV areC? (see so [2]). Since € L2 (R;; WL(RY)), itis microlocally

H near(m, &) € T*(M) for &€ ¢ Rdr. On the other hand sind® (m, df) = 1— C2r~2, L is microlocally elliptic neakm, dr)

for m ¢ X henceu € H? microlocally near these points, and finallye HI%)C(M \ X). Therefore to prove that € Hléc(/\/l)

we have to establish that is microlocally H1 near (mg, dr) for mge X. Lett e R+ y(r) = (m(z),&(r)) € T* M be a
bicharacteristic curve with

v (0) = (mo, dr). (3.26)
The equations foy are:
. Py . aPp
[ —— -2
X 98, §u pyoTR
Py(§) = L(m) =0.
We get:
£=0, £,=0, (3.27)
. c? c 2 c
i=2(1- = )& — 2—&,, p=——by — 24, 3.28
< 7'2 )Sf rzg(ﬂ 4 r2$¢p rzsf ( )
£ = ¢ 8 C — ¢ . &= —zgazc, (3.29)
r2 r r2
P =—2%, z=—2%, (3.30)
(i—C9)2—r2p% — 2 ;20 (3.31)
We obtain:
: c? ) C
& =1, £, =0, t=2<1— r_2) (p=—2r—2, (3.32)
and sincen is a null geodesic
i—C¢ = i) —C¢(0) =2, (3.33)
(€2 =r?)¢ - Ci = (C?(ro, 20) — r&)(0) — Ci(0) =0, (3.34)
2
0 < r'2+22=4<1— C—2> (3.35)
r
We deduce that
y@R)NT*(T) =9, (3.36)
and sinceX is Non-Confining we have:
y@®NTHTUX)=0. (3.37)
Then there exists such thatn(t) ¢ ToU Zg. We get from (3.30), (3.35) th§{(t) ¢ R dr. Sincex € H1 microlocally near (r)

we deduce from the theorem of propagation of singularitiesikati 1 microlocally near (0). We conclude that € Hl%)c(/\/l)

and
du € L2 (Ry; L2 (RD)). (3.38)
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Let x bein Cgo(ng) equal to 1 on a neighborhood @§. Thenv := (1 — x)u satisfies:

veE Lﬁ)c(Rl; Wl(Ri’)), 8,21) — Ayv € L%C(Rt; LZ(R)?C’)).
We deduce that

2 2 Twlm3\V

dve Lloc(Rl’ [W (Rx)] )’
hence by the theorem of intermediate derivates ([26], p. 19, Theorem 2.3):

v e L2 (Ry; LA(RY)). (3.39)
The result follows from (3.38) and (3.39).0

The previous result allows define the traceuondd;u on M;. We refer to [26] for the definitions and properties of the
usual Sobolev spacds®, Hj.
Proposition 3.4. We assume tha¥g is Non-Confining. Lei be such that
2 1m3 2 2(m3
u € Ligo(Ris WH(RY)),  Lu € Lige(Res L9(RY)).

Then we have
1

u e CORy; H2(RD)), (3.40)
<1— g)atu e CO(R;; H™2(R3)), (3.41)
du € CO(Ry; H™L(Tp)). (3.42)

Proof. Sinceu € L2 (R, WL(R?)), and X is Non-Confining, the previous theorem implies that € L2 (R;; L2(R)).

Thusu € CORy; Hl(Rﬁ)), and the intermediate derivates theorem (Theorem 3.1 of [26], p. 23) assures that
we CORy [ (RY), L2(RY)]; = 12 (R)).

Now if Lu € L2 (R;; L2(R2)), we have:

A\ .o 2 13
<1—r—2>8tueL|OC(Rt;H (®3)). (3.43)
hence the same theorem implies that

2 1
<1— C—2>3r“ € CORy: [HM(RY), HTH(RY)]3 = H 2 (RY)). (3.44)

Blw

1
That proves (3.41) sincél + %)—1 is a multiplier of H2 becauseC € C2. Now since Xy is Non-Confining, Theorem 11.8
of [26], p. 76 assures that:

C2
¢ € H3(To) = (1 - r_2)¢ e H}(To).

Thus we deduce from (3.43) that
9%u € LE (R H~2(Tp)). (3.45)
Finally (3.42) follows from (3.25) and (3.45) by the intermediate derivates theorem.

Thanks to the result of continuity stated in Proposition 3.4, we may investigate the uniqueness of a possible solution of
Lu = 0 for data specified oMy,. First we prove that = 0 on M whenu = (C — r)d;u = 0 on My,. This result is neither a
consequence of the uniqueness theorem for the strictly hyperbolic operators ([18], Theorem 23.2.7) because the level surfaces
M; are not non-characteristic sinég(m, dr) = 0 on X', nor a direct application of the conservation of the energy sige
is not definite positive.

Moreover, whenM is totally vicious, i.eT # @, and the Non-Confining condition is fullfiled, we would like tha& 0 on
M whenu = 0 onT. Unfortunately, althougl¥’ is non-characteristic, we cannot use the classical results of unique continuation:
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on the one hand, 0 is a double real rooofm, dt + tN) =0 form € X, N = (8,C(m) — 1) dr + 3, C (m) dz, hence we cannot
apply the Calderon theorem ([18], Theorem 28.1.8). On the other hand, we hawvefar:

[ P2, (P2, C — r}}(m, d) = —4(|3,C(m) — 1% + |3,C(m)|?) < O

henceX is nowhere strongly pseudo-convex, and we can no more use the uniqueness theorems for second-order operators of
real principal type due to N. Lerner and L. Robbiano (see [18], Theorem 28.4.3) to deduge=tbatn M, fromu =0 onT.
This leads to make some assumption of analyticityCoand V near X, in order to apply the Holmgren theorem.

Theorem 3.5. We assume thaf is Non-Confining and'g # @. Let u be satisfying3.10)and one of the following conditions
for somerg € R:

1) u=@2-$)du=00nM,.
(2) u=9;u=00n{ry} x ToandV andC are real analytic in a neighborhood .
Then
u=0 onM. (3.46)

We shall see in Section 5 another uniqueness result for the incoming solutions.

Proof. A key ingredient is the following

Lemma 3.6. We assume thaX( is Non-Confining. Let satisfying(3.10)and such that for somg € R:
u=0u=0 onf{r} x To. (3.47)
Then

u=0 onT. (3.48)
Proof. Forve C(RY), m € Z we put:

27

Puu(t,r, z)::/ _'m‘pv(t @, r,z)de.
0

The Fubini’s theorem and the Parseval equality assureRhdtas a unique extension fro[rﬁ)c(./\/l) to
L2 (R, x [0, oo[, xRy, r dr dr dz)

satisfying for O< rg < r1, zo < 21:

T 2w r1 21 roz1
////Iv(f o.r, z)| r dr dt de dr dz = Z ///|va(t rz)| 7 dr dt dr dz. (3.49)
—T 0 7o 20 —T ro 20

If u satisfies (3.10 (¢, ¢, 1, 2) := eim‘/’Pmu(t, r, z) is solution of:

c? e
<1 - r—2>a,2um — Axtty — 2lmr—28tum +Vup =0, (t,x)€T, (3.50)
1 O(R.. 173 O(m.. -1
um € Hige(T),  um € C*(R; HZ(Tp)),  dyum € C°(Ry; H™(To)), (3.51)
um = ot =0 onfrg} x To. (3.52)

(3.50) shows that,, is solution of an elliptic equation iff, therefore (3.52) and the Aronszajn—Cordes unigueness theorem
(see, e.g., [18], Theorem 17.2) imply thgt = 0 onT. Then (3.48) follows from (3.49). O

We now consider condition (1). It is sufficient to prove that O for ¢ > 0. We define:

t>0=v(t,x) =ul(t,x), t<0=v(t,x)=
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v satisfies (3.10). We use the approximation procedure (3.21) by putting:
o0
vi(t)=j [ O(js)v(t —s)ds.
—0o0

v; is a smooth solution and; (t) = 0 fort < —1 if 6 is supported if—1, 1]. Hencev; =0 in T by Lemma 3.6. Sinc&y is
Non-Confining,dTo = X, and the trace ob; (¢) is zero onXp. We use Theorem 11.3 of Lions and Magenes ([26], p. 65) to
get

c2-1
'1—r—2' |vj(t,x)|2dxécR-/!vaj(t,x)!zdx-
Ix|<R R3

Now we evaluate

dt(/‘ ‘!3;vj(t x)| +|va/(t x)| dx) 2/|Vv18tvj|dx

1/2 1/2
(/‘ ‘|8tv/(t x){ ) </|vaj(t,x)|2dx>
R3
We obtain by the Gronwall lemma:
/' '|a,v,(t 0%+ |Vevj (1, 0)| dx<eﬁ|t+1|/'1——'|8tvj( 1,02+ |Vxvj (=1, 0|2 dx. (3.53)

Thereforev; = 0 sincev; (—1) = 3;v;(—1) = 0, and condition (1) implies (3.46).
For the second condition, we considey given by (3.21). Since = 0 in T by Lemma 3.6, we get that; is a smooth
solution that is null inT. As for (3.53), we obtain:

c? c?
/‘l—r—2‘|8luj(t,x)|2—|—|quj(t,x)|2dx<eﬁ|t|/‘1—r—2‘|3tuj(o,x)‘2+!quj(o,x)|2dx. (3.54)
3 R3
We put
wj(t,x) =" Cuj 1, x). (3.55)

(3.54) assures thait; € LY®Ry; Wl(Rﬁ)), hence we can define the partial Fourier transform with respeatfta;:

o
Wk, x) = f e ;@ x)dr € CO(Ry; WL(RD)). (3.56)
—0oC
w; satisfies
(k,x) € R x Tg == (k, x) =0, (3.57)
Aj=0 onRy xRS, (3.58)
where
. c2 c? c?
A:=4<1——>Bk+Ax+4l 8k¢+4k<1 )ak+2|k a(,,+<1 2)(1<2+2—v). (3.59)
7' r

We remark thatd is elliptic on Ry x (]RE \ (To U Xp)). Moreover, the Non-Confining condition assures tRatx Xg is a
non-characteristic hypersurface with respeoﬁttSincewj (k, x) = 0inRy x T, the Holmgren theorem implies; (k, x) = 0
on a neighborhood dR; x Xg. We now conclude by the Aronszajn—Cordes theoremithat 0 everywhere. Finally ; =0
and condition (2) implies (3.46).0
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We have studied the uniqueness of the sufficiently smooth solutions. The sequel of this work deals with the problem of the
existence of such solutions, that is not obvious when the manifold is not causal. We introduce the vector space:

&:={ueO®R: WHR2)): Lu=0, 8ueO(Ry; L2 (RD))}. (3.60)
endowed with the indefinite formi (1) given by (3.20) and the space of the admissible Cauchy data:
Hi={(f.9) e WHR}) x LE(RY); Fueé, u©® =(f.9)}, (3.61)

where forv € CL(R,; D' (R3)), we put:

Vi= (8;)1)) . (3.62)

A priori, whenT # @, H is not an Hilbert space for the norm &1 x L%. The previous theorem assures that the family of
maps

Ut):uO) e H—u(@) eH (3.63)

is a strongly continuous group of linear operatorstonin the following parts we construct global solutiomsvith E («) = 0
or E(u) > 0. We let open the problem of the existence of global solution with negative energy.

4. Theresonant states

In this section, we investigate the global solutians HI%C(M) by separation of the variabte

u(t, x) = ev(x), (4.1)
with A € C andv is a distribution orR3. Thenu is solution of
Lu=0 inM, 4.2)
iff ve L%C(ng) is solution of the homogeneous reduced wave equation:
2CA c?
Au+—za¢u—x2<1— —2>U—VU=0 onR3. (4.3)
r r

By the standard results of elliptic regularitye szjc(]Ri3) andv € C* for |x| large enough, sinc€ andV are continuous and
compactly supported. (4.3) is similar to the acoustic wave equation in an inhomogeneous medium (see, e.g., [6,20,30,34]); the
crucial difference is that + r~2C2 that plaies the role of the refractive index, is null Bg and negative ifTg.

We start by proving a result of Rellich type, stating that there existsperiodic, non-constant, solution ff: = 0 satisfying
some natural constraint at the space infinity.

Lemma 4.1. Letv be a solution of4.3)for A € iR*, satisfying one of the following conditians

vE LZ(RB) U WI(RB); (4.9)
1

i~Vv +Av=O<—2), |x| — oo (4.5)

x| x|

X 1

—~Vv—)»v=0<—2), |x] = o0. (4.6)

x| x|

Thenv =0.

For A = 0 the result is well known: for non-negative potential the conclusion of the lemma is valid; for general poten-
tial v, since the formv — [ V|v|2 is compact orHI%C(RS), the space of solutions of (4.3) with= 0 is of finite dimension.

Proof of Lemma 4.1. Let A = ik, k €]0, oo[. We haveV (x) = C(x) = 0 for |x| > Rg. Thanks to the Aronszajn—Cordes
theorem, it is sufficient to prove

|x| > Rop == v(x) =0. (4.7)
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Sincev is solution of the homogeneous Helmholtz equation for large has the following expansion with respect to the
spherical harmonic¥;:

oo m=n

k2 R=0v@ =) Y al @@, p=kl o=p""x,

n=0m=-—n

with
a(0) = ' hiP (kp) + B hD (kp), et Bt € C,
wherehﬁ,l’z) are the spherical Hankel functions, which satisfypas co (see, e.g., [6], p. 30):

hfjkp%=n4éﬂwfﬂf%wl+o(f)]
L2 () = p e [140(p )],

From the Parseval equality

(4.8)

/|v(pw)| Ww=3"3 | f|w Vo) Pdo=3 3 —a”’(p)‘
n=0m=—n n=0m=—n

we deduce with the asymptotic behaviours (4.8), that (4.4) implies (4.7).
We now assume that (4.5) or (4.6) is satisfied. We multiply (4.3§ laynd integrate ofix| < R. Sinced, C =0, we get by
the Green formula:

_ . C
5/ 9pv(Rw)v(Rw) dw = 2k R™23i / — By dr =0.
r
52 x|SR
Then the Rellich theorem (e.g., [6], Theorem 2.12) assures (4(7).

Lemma 4.1 shows that we have to look for the non-trivial solutions of the homogeneous reduced wave equation, for
A € C\ iR. We adapt at our problem the concept of outgoing (resp. incoming) solution by Lax and Phillips [24] AGiV@n

f €&, the space of the compactly supported distributions, a solmﬂéﬁ) of

2CA c?
Av+—23¢v—kz<l——2>v—Vv=f onRS, (4.9)
r r
is said to ber-outgoing(resp.A-incoming if
2C c? - -
WO =y O [f 2 gt =225 O Ly )], (4.10)
r
where
—(+H)A|x]|
_ €
v O ) = (4.11)
4| x|

It is well known that in the cas@ € iR, the A-outgoing (respA-incoming) condition is equivalent to the Sommerfeld
radiation condition (4.5) (resp. (4.6)). A complex numhes anoutgoing resonancéesp.incoming resonandeif there exists

a non-nullA-outgoing (respa-incoming) solutionuf(*) of (4.3), calledresonant stateWe remark that when a resonant state

v, has a finite energy, i.e; € H1(R3), the total energy (3.20) of the time dependant solutipr, x) = e v, (x) is zero:

1 oy c?
E(u;) = EeZW)’/ |x|2<1 - —2) |2 + V|2 + Vv |2 dx = 0. (4.12)
3 r
We denote‘R*(*) the set of the outgoing (incoming) resonances. Becausad V are real axisymmetric, and since we
may takev;" (x1, —x2,z) = v, (x1,x2, 2), itis easy to see that:

reRT < ieRT, (4.13)
reRT = —reR™. (4.14)
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Hence we shall consider only the set of the outgoing resonances, simply called “resonances”, and we omit the superscript
R:=R*t, vy = v;.
We summarize the properties of the set of the resonances:

Theorem 4.2. R is a discrete subset @, and we have

RNIR* =¢; (4.15)
LER,0<R(M) = vy € HA(RY); (4.16)
T0=Q):>Card{xe72;0<51i(x)} < 00; (4.17)
To=#,0<V = {LeR;0< RV} =; (4.18)
To#£ 0, A e RNIO0, co[— dpvy =0; (4.19)
To # ¥ = Card R N0, oo ) = oo. (4.20)

We know that for the scattering by obstacle there exists no real resonance, and for the scattering by non-positive potential,
or metric perturbation, or Schwarzschild black-hole, there exists only a finite set of real resonances with finite energy (see,
e.g., [1,24]). (4.17) and (4.18) show that this remains true even if there is a closed null gedigegi@) but no closed timelike
curve (Tg = ). The main novelty, (4.20), due to the existence of a closed timelike curve, is that thisrd@tite. This last
result can be physically interpreted as follows: in the framework of the studies of the stability of the manifolds of the General
Relativity, the existence of an infinite set of resonant states with finite energy means that we cannot prove the possible stability
of the metric (2.2) by a method of perturbation (see, e.g., the works of Y. Choquet-Bruhat, A. Fischer, J. Marsden); hence we
can suspect that the manifold is actually nonlinearly instable in a suitable set of solutions of inhomogeneous Einstein equations.
This agrees with the “conjecture of chronological protection” by S. Hawking [16], that states that any universe with closed
timelike curve is instable.

Proof of Theorem 4.2. Let B an open ball ofR3, that contains the supports 6fand V. We introduce the operatdt (1) on
H1(B) by putting:

1 —Alx=ylT 2C c?
KW)v(x) = — Rl Y ST A (y)dy. (4.21)
47 lx =yl r2Y r2

If v) # 0 is a resonant state, thesh()»)(vMB) =Vp|B- Conversely, ifv € Hi(B) \ {0} satisfiesK (A)v = v, thenv,, defined by
v in B, and by the right hand of (4.21) fare R3 \ B, is aresonant state. Therefore the problem is reduced to investigating the
solutions of:

KGyv=v, veHY(B)\{0}, 1€C, (4.22)

andR is the set of complex numbekssuch that 1 is eigenvalue &f(1). By the classical results on the potentj@ (e.q., [6],

Theorem 8.2)K (1) is a bounded operator frof1(B) to HZ(B). Hence the Sobolev theorem assures thét) is an analytic
family on C,,, of compact operators o 1(B). Then the Atkinson theorem (see [21], Theorem 1.9, p. 370) assure® thdt
or R is discrete. The first alternative is excluded by (4.15) that is stated in Lemma 4.1.

(4.16) is an obvious consequence of the asymptotic behaving“(vf) as|x| — oo, and we have:

C2
f |x|2(1— r—2)|ux|2+ |V |2 4 Vs [2dx = 0.
]R3

SinceC < r and the formf > [ V|f|2dx is compact orH 1, we get (4.17) and (4.18).
Letv; € H? be aresonant state far> 0. We use the Fourier expansionigf

2
vy = Z Vioms Vam(x = (rcosp, rsing, z)) := dme / e im0y, (r cosh, rsing, z) do.
meZ 0

vy,m is solution of (4.3) and an integration by parts gives:

_ C c?
2|mxf r—2|vx,m|2dx = f IVoiml? + Az(l— r—z)m,mﬁ + Vivpml?dy =0.
R3 R3
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We deduce that, , = 0 on the non-empty support @ for m # 0. Sincev,_,, is solution of (4.3), the Aronszajn—Cordes
theorem assures that ,, = 0 everywhere and (4.19) is proved.
Given an axy-symmetric domai2 ¢ R3, we introduce

L3(2):={v e L%(£2, dv); dpv =0}, (4.23)

To establish (4.20) we show that give > 0, there exists. > Ao such that—12 is an eigenvalue of the densely defined
self-adjoint operator on3(R3),

2C?
AQ):=—A—22=+V, (4.24)
r
with domain
D(A(M) = H?(R3) n L3(R3). (4.25)

SinceCr~1 andV are continuous, and compactly supported, the Weyl theorem assures that

C2
vesdAG) = (0,000, o(AG) N]—00, 0= opp(AG)) N [—AZH < H . o[,
LDO

hence forx > 0 we have:

dim P]_oo,_)hz](A(A)) < 00, (4.26)
where(P;(T)); R is the family of spectral projections of a self-adjoint operdtoiVe choose 6 rg < r1, zo < z1 such that
c?
(r, z, 9) € Tq :=1rg, r1.Ix1z0, zl[xSl = — >14e>1. (4.27)
r
We introduce the self-adjoint operators:
Bi(A) 1= —A —22(L4¢) + | V]l oo, (4.28)
D(B1()\)) = {U1 € L%(Tl); Avg € L2(T1), vy =00n 8T1}, (4.29)
2
By(h) 1= —A—32=5 4V, (4.30)
r
D(B2(v) = {va2 e LE(R3\Ty); Avy e L2(R3\ T1), v2=00naTy}, (4.31)
Ap() := B1(A) & Ba(M). (4.32)

By Proposition 4 of [31], tome 4, p. 270, we have:
2| €2
=, = —VlLee < AQR) < Ap(R),
r Lo©

hence the min-max principle implies that
dimP_o 2/(A0) >dimP_ o ;21(Ap() =dimP_, _;2)(B1(V)); (4.33)

B1(0) is a positive self-adjoint operator dr%('ll’l), and its resolvant is compact by the Sobolev theorem(dg), < be the
sequence of its eigenvalues. We have

o (B1(1) N =00, =22] = {an — (1 +£)2%; o <e2?).
Sincea;,, — oo asn — oo, we deduce that:

dimP,_, ;2/(B1(})) = 00, A — o0 (4.34)
We assume there existg > 0 such that

r>rp= 22 ¢ o (A()). (4.35)
In this case, sinceé — A(A) is an analytic family of operators in the sense of Kato, its resolya(t) — 2 lisan analytic

function of two variables ofi(1, z); L € R,z ¢ o (A(1)}, and we have:

1 _
P]—oo,—AZJ(A(’\))=E yg (AG) —z2) k.
aD()
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with

— IVl —1<a<0, ~1<b< 1.

. c?
D(L) == {z —a+ib; —AZH —
r Lo

We deduce that > o> P_, _;2/(A(M) € L(L3(R3)) is continuous, therefore

Azrp=dimP_, _;2/(A(1)) =dimP, (A(hg)) < 0.

—oo,—)»%]

This a contradiction with (4.33) and (4.34)0

5. Scattering states

WhenT is not empty, the manifold is totally vicious, hence there exists no Cauchy hypersurface. Nevertheless we shall
prove that the global Cauchy problem is well posed for regular data specified at the past null infinity, and these solutions are
asymptotically free at the future null infinitg€attering StatgsFurthermore, the Scattering Operasois well defined for any
free wave with finite energy, but, unlike the usual situations, the wave operatonstarausal. As regards the mathematical
tools, we keep the features of the scattering theory, that involve neither the positivity of the energy, nor the existence of a unitary
group: we use the generalised eigenfunctions method.

We start with a uniqueness result for the solutions with some given asymptotic behaviour. We recall some basic notations
for the wave equation on the Minkowski space-time:

Loug :=0%ug — Ayug=0, (1,x)€R x RS, (5.1)
The Cauchy problem is solved (]Riﬁ) by the groupUg(z):

Uo(t)ug(0) = ug (). (5.2)
We introduce the spaces associated with the finite energy waves:

o= {up € CO(Ry; WE(RD)); Loug=0,8ug € CO(Ry; L2(RD))},  Ho:=WH(R3) x L2(RD), (5.3)
which are Hilbert spaces for the energy norm
1
luol, = |uo()| 3, =5 [ lonott.0)* + Vot v *a. (5.4)
R3

andUp(r) is a strongly continuous unitary group &ty.

Theorem 5.1. Letu be in€. We assume that one of the two following conditions is fullfiled
Q) weLl(R;LE(RD)), (5.5)
0 —00. 5.6
”U(l)“wle%—) . t— —00 (5.6)

(2) T £ @, and there exist, ¢, R > 0, such that

Ju@) ] ya < e, (5.7)

x| <—t—R=u(t,x)=0. (5.8)
Then

u=0 onM. (5.9)

We make some remarks. (1) The global constraint (5.5) is usefull ihgn: the outgoing resonant states with finite
energy satisfy (5.5) but are exponentially increasing as +oo. (2) It is known that wherll' = ¢ and 0< V there exists
non-null solutions satisfying (5.7) and (5.8). (3) Lemma 3.6 and (3.53) show that (5.7) is a consequence of (58} \wghen
Non-Confining.

Proof of Theorem 5.1. We assume the first condition is satisfied. Letbe defined by (3.21). Then; € £ satisfies (5.5) and
foranyk € N, 8fu; e L1(R;; LE (R?)). Therefore

HUJ-(I)HHO -0, t— —o0,
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We deduce that
t

0 \y4 _ C .2
Uj([): Up(t —s) q]'(S) ds, qj .=r—23tuj+2r—23t’¢uj—\/uj. (5.10)

C
3t2uj, r—zatz’wuj, Vuj € LI(R[; LZ(RE))

Sinceu ; satisfies (5.5), we may consider the Fourier transform

i (k) ;=/e*”“uj(:)dteco(Rk;L%C(Rﬁ));
R
(5.10) implies that

r

. cz. L Co .
uj(k)=yiJ,g*<k2r—2uj(k)—2lk Za(puj(k)+wj(k)).

Henceii ; is a ik-outgoing solution of the homogeneous equation reduced wave equation (4.3). Therefore Lemma 4.1 assures
thatii; =0, and (5.9) is proved.
We now consider the second condition. (5.7) and (5.8) allow to define the Fourier—Laplace transform

i) :=[e?\’u(t) dt,
R

which is anL%C(ng)-valued analytic function of, %(1) < —a. @i (1) is solution of the elliptic equation (4.3). Moreover (5.8)

and Lemma 3.6 imply that(A) = 0 onTq. We conclude thai (1) =0 on Rﬁ, so (5.9) is established.O0

We now return to the problem of global solutions by constructing Wave Operators. We dighidtes space of theegular
wave packetthat are the smooth solutiong of (5.1) such that

fig(0, &) :=/e—""5uo(o, x)dx, 3;4ig(0, £) ;=/e—ixfatuo(o,x)dx eCSO(Rg’\{O}). (5.11)

Theorem 5.2. Givenug € £5°, there exists a unique € such thaw;u € CO(R;; L2(R$)) and satisfying5.5) such that
Ju@) — ua(t)HH0 -0, t— —o0. (5.12)

Moreover there exists a uniqmg € &g such that

Ju® —ug @]z, = 0. 1= +o0, (5.13)
and we have
—12 2
lug gy = E@) = [ud |2, (5.14)
ug € &G°. (5.15)

This theorem allows to introduce the Wave Operators:
W™ lug > u, W+:u8_|—>u. (5.16)
To make the link between these both operators, we use the time reverse operator:
R:u(t,xl,xz, z) s (Ru)(t,xl,xz, z) = u(—t,xl, —x2, z). (5.17)
SinceR(Lu) = L(Ru), we have
WT =RW™R. (5.18)

These wave operators are defineddgh, but when the chronology is violated,# @, we do know to characterize neither their
ranges, nor the possible continuity property. Furthermore, they are no causal in the usual sense, since Theorem 5.1 shows that
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if u=WTugy exists for some free wavg, € & satisfying the initially incoming condition (5.8), and= uj for t <0, then
u=ug =0.
We now consider the Scattering Operator:

Stug —ug. (5.19)
The previous theorem assures tas an isometry from‘?cc)>O ont058°, and by (5.18) we have
S~L=RSR. (5.20)

ThereforeS can be extended by continuity and density, into an unitary operatdlpdenotedS again. To investigate this
operator, we recall two important tools (see [6,24,29]): the translation representation for the free wave equation is the map:

uge&or> fle LZ(]R‘Y X SE,, ds do), Fis, 0) = o |Iim toug(t, x = (1 +s)w) in L%C(RS X SC%, dsdow), (5.21)
t|— o0

that is an isometry fron€g onto L2R, x SE), ds dw); the spectral representation is the isometgy— f from & onto
L2(Ry, x SE,, dk dw) defined by (5.40). The link between these both representations is the Fourier transform with respect to

flk, w) = \/%feiksfn(s,w) ds. (5.22)
We put
S:ug (0) = ud (0). (5.23)

ThenSis an isometry fronfHg onto Hg, and because of the invariance of the wave equatioa- 0 by the time translation,
we have for any € R:

Up(t)S= SUp(1). (5.24)
With obvious notations, we can also represent the scattering operator by putting:
sirf =gt S =7 (5.25)

SinceS commutes with the free groulip(t), $% commutes with the-translation. Therf is represented as a multiplicative
operator-valued functiof (k) on LZ(SC%). We shall state in Proposition 5.5 that we can represéht by using the distorded
plane waves as well as for the usual globally hyperbolic case.

Proof of Theorem 5.2. We start by constructing global solutions of tygistorded plane wave® (z, x; k, w):

Lemma5.3. Forall k € C, ik ¢ R, w € S, there exists a uniquik-outgoing functiond (x; k, ») that is aIﬂ%c(ng)-valued
analytic function on(Cy \ iR) x $2, such that
D1, x: k, w) = k=20 L dkiyg (o k) (5.26)

is solution of Lé = 0.

Proof. We use the notations of the proof of Theorem 4.2. We remarkitldat= 0 iff ¥ is an k-outgoing solution of:

2 c? . C 2 C? 2C 12 21 —ikx-w
Ko\ 1= = |¥ + AW + 2ik—8,¥ — V¥ = [ k“— — 2“5 (x"0” —x“w") + V |e : (5.27)
r r r r
HenceY exists and is unique, iff the equation
. c? c i
(K (ik) — 1d)¥ (s k, ) =y <k2—2 - 22 (rlo? — x20l) + v)e—"“"w (5.28)
r r

has a unique solution iHZ(B). We know thatK (ik) is an analytic family of bounded operators fradt(B) to HZ(B), hence
of compact operators o 1(B). Therefore the Fredholm theorem assures that this equation has a unique solutio ishen i
not a resonance, and by the Steinberg theorem, this solution depends analytitallydes. O
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In the previous lemma, we can take= R* since Theorem 4.2 states that there is no resonan@*inaind by using these
distorded plane waves, we can get global solutions with finite energy:

Lemma5.4. Forany f_ e Co?(RE x 52), the function

u(t,x) = %//(D(t,x;k,w)f_(k,a))dkdw (5.29)
R §2
satisfies
ueCOR; WHRS),  Buec®®R:L3R3), Lu=0. (5.30)

Proof. lItis clear that we havé.u = 0. We writeu = ug +v with

ug (t,x) == %//eik(’_“")f_(k,w) dk do, (5.31)
R §2
v(t, x) = %//eik’lll(x;k,a))f_(k,w) dk dw. (5.32)
R §2
We have

e o S 1
w13 = 5 /éx-s <e—"'f'f_ (—m, é—|> +éf'5'f_<|s|, _%))de,
RS

henceu € C®(Ry; S(]R{?C)) is a regular wave packet, and we have for angN“, N eN:

Ix] < Ro=> [0%ug (t,.)| < con (L+12) . (5.33)
On the other hand we have
k> / W (x; k, ) f-(k, 0) do € C§° (RE; HEL(RD)),
S2

thus

veS(Re: Hpo(RS)). (5.34)
We introduce

q = Lov. (5.35)
We haveg = (Lo — L)(v — ug ), thus (5.33) and (5.34) assure that

q € LY(Ry; L2(R?)), x| = Ro = q(1,x) =0. (5.36)
Moreover sincel (-; k, w) is ik-outgoing (5.27) imply that
W (xik,w) =y * F(;k o) (5.37)
with
2

F(x; k,w) = [kzc—z — 2ik Czaw + V] (e—”‘“” + ¥ (x; k, ). (5.38)
r

r

A function u € CL(R; D/(Rﬁ)) is outgoingin the sense of Cooper and Strauss [7], if there existsO such that for all
T € R, Ug(r — T)u(T) vanishes in the forward corjg| <t — T — a. We putw(z, x; k, w) := €KW (x; k, w). From the well
known result

Vit
x| gz—T:wo(z—T)(, 'k+> =0,
Ikyik
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we get

. +
x| <t —T — Rg=> Ug(t — T)W(T) =€*T F(-; k, ) % [Uo(t -7 (iz";)] =0.
Yik

We deduce thai (¢, x; k, w) is outgoing hence is also outgoing and by Theorem 4 of [7] and (5.36), we get

t
0
V() = / Up(t — ) (q(s)> ds € CO(R,; Ho).- a (5.39)

We return to the proof of the theorem. Since the problem is linear, the uniquenegsasfsured by Theorem 5.1, and (5.13)
and the conservation of the energy imply the uniquenes%*ofl’o construct these waves, we put:

. 1 2nl Al
f(k,w) = W[k i (0, —kw) —ikoriig (0, —kw)]. (5.40)
Then (5.31) is satisfied, andis given by Lemma 5.4. With defined by (5.35) we put:
_ 0
uar(t) ==Uq (1) + Up(?) [ Up(—s) <q(x) ) ds. (5.41)
R

By (5.36) and (5.39) we get:

t
u) = ug 0, < f lg)] 205 -0, 1 —co,

—0o0
o

) = i Oy < [ Ja@l 2 =0 1= +oc.
t

Finally (5.14) is a consequence of (5.12), (5.13) and of the conservation of the energy (3.20). It remains to pt@véstlaat
regular wave packet. Since (4.15) assures ®atiR* = 4, it is a direct consequence of the following spectral representation
of the scattering kernel.

Proposition 5.5. There exists a functiofi(«’, k, ) analytic onSS, X (Cx \IR) x S(% such that

e—iklxl _/ o oiklx]
W(x;k,w):—S(—,k,a)>+O<—2), x| = oo, (5.42)
|x| x| |x|
. giklxl /oy oiklx|
— VW (x; k,w) =—ik S(—,k,a))—i—O(—Z), |x| = oo. (5.43)
| x| x| x| |x|
For any f_ € L2(Ry x $2), we have
Sk = -k = 5 [ Sk o) f- k)b (5.44)
T
2

Proof. From the formula (5.37),

1 e iklx—yl
@(x;k,w):—a / WF(y;k,a))dy,
[YI<Ro

we easily get that

1 e iklx] iy —ik|x|
Dk, w) = —— f e MV F(y;k, w)dy + O . x| = oo,
4 |x| |x|2

IyI<Ro

X . —ik|x]|
m-VxlI/(x;k,a))z—lklI/(x;k,a))—}—O W , x| — oo.
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SinceF is given by (5.38), the function

- 1 [T

S, k, ) :=—4— f gke YF(y; k, w)dy (5.45)

TT
lyI<Ro
is analytic ons2, x (Cy \iR) x S2 and satisfies (5.42).
To prove the spectral representationSofve denotef_{ the translation representatiomq‘f . By (5.13), (5.21) we have:
T _ 072 2

fi(s ) == lim tdu(t,x =t +s)o) in Lige(Ry x ).

We get from (5.32) that
1 ; .
10pu(t, x = (t + 5)w) = 10ruq (1, x = (1 + s)w) + = / / ikte'k’lI/((t +s)wik, @) f—(k, ') dk do’.
R §2

On the one hand (5.31) gives

topug (1.x = (t + 9)w) = —fE(s,0), 1 — +00.
On the other hand (5.42) assures that

/fikteik’llf((t + 9w k, o) = (k, ) dk do’ — /[ ike K S(w, k, ) f(k, ) dk Ao/, 1 — +00.

R §2 R §2
We deduce that

fﬁv@—fﬂv@—j{[eW([mﬁwkdﬁ(kdmd)&

JF CE) - — VU 27_[ £ El — £ El
R §2

and by (5.22) and taking the inverse Fourier transform, we obtain (5.44).

When the manifold is globally hyperbolic, i.€.= X = ¢, we can apply the general results of the “black box” scattering
(see, e.g., [36]), that assure that C — S(k) € £L(L2(52)) defined by (5.44) is meromorphic dhand the poles essentially
correspond to the resonances. More precisely, the multiplicity of akpaflé is equal to the difference between the multiplicities
of the possible resonancdsand —ik. We state a less precise result when the metric is not causal.

Theorem 5.6. The£(L2(52)) valued scattering matrif (k) is meromorphic off. If kg € C is a pole, therikg € R. Conversely
a complex numbekg satisfying
R(ikg) > 0, ikge R, —ikg ¢ R, (5.46)
is a pole ofS.
When the manifold is chronologicall = @, but non-causalX # ¢, and if 0< V, then there exists no resonance with
positive real part (Theorem 4.2, (4.18)). In this case, the Fourés—Segal theorem [9] implies that the scatteringSojserator

causal. When the manifold is non chronologiGak- @, we have stated in Theorem 4.2, (4.20), that there exists infinitely many
resonances with positive part. We conjecture that some resonance satisfies (5.46) and the scattering operator is not causal.

Proof of Theorem 5.6. The analytic Fredholm theorem assures that the solwiaf (5.28), considered asIaIkZ)C(ng X SC%)-

valued map ok, is meromorphic orC, and the poleg satisfy k € R. Therefore the meromorphy of the mag C +— S(k)
follows from (5.44) and (5.45).

SinceSis unitary onHg, S(k) is unitary onL2(52) for almost every reat. We deduce from the analyticity &f(-) that
ik ¢ R= Sk =[(5®) ] (5.47)
Therefore to prove thaty is a pole ofS, it is sufficient to establish that

Ker(S(ko))* # {O}. (5.48)
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We easily get from (5.44) that fare C, ik ¢ R, andg € L2(S2), we have:

. ik [———
[(50) sl =@ + 5 [ S k(o) do'
S2
We remark that from the uniquenesswfassured by Lemma 5.3 we get

V(s k o) =¥ (x; —k, ),

hence
S k) = 8@, =k, ), (5.49)
so we obtain
—ik¢g R=[(Sk))"g](w) = g(w) + % f S, —k, w)g() do'. (5.50)
2

To show (5.48), we use the following:

Lemmab5.7. Letv be aikg-outgoing resonant state associated with the resonatige R \ {0}. Then there existg € C(52)
such that

e—ikolxl x gikolxl 7
v(x) = —g(—)(l—f—o(l)), — -Vv(x)=—ik0—g<—)(l+0(l)), |x] = oo, (5.51)

|x| |x| |x| |x| |x|
g#0. (5.52)
Proof. The existence of satisfying (5.51) is a direct consequence of the integral representation (4.10) (see so [24], p. 127).

Moreover Theorem 4.5 of [24], p. 129, assures that the translation represehtatiP&R; x SC%) of the eventually outgoing
data(v, ikgv) satisfies:

s<—Rog=h(s,0)=0, s> Rg= h(s,0)=e*05g(q).

Assume thag = 0. Then formula (3.1g) of [24], p. 111, implies that ikgv) is also initially incoming. Theorem 4.2 of [24],
p. 123, yields that (x) = O for |x| > Rgq. Sincev is solution of the homogeneous elliptic equation (4.3), the unique continuation
theorem shows that= 0, that is a contradiction. O

We now claim that functiory given by the previous lemma fdr satisfying (5.46) belongs to Ké$(kg))*. From the
equations

e c?
Av +2Ik0—28¢v —|—k§<l— —2)1) —Vv=0,
r r

2 .
[A — 2ik0£2 dp + kS (1 - C_2) — V] (e'ko""‘) + W (x; —kg, )) =0,
r r
get by the Green formula:

/ |x—| V() (RT 4w (x; —kg, ) — v(x)|x—| V(R0 4w (x; —kg, ) dS(x) = 0.
X X
Ix|=R

On the one hand we have:

/ Ix_l Vo (x) (dhoxoy — v(x)lx—l -V (dhor@) dsx)
X X
xI=R

= —ikgR / g koR(1-0"0) 6 (/)1 + o - w) dow’ + 0(1)

§2
=—4ng(w)+0(1), R— oc.

On the other hand:



58 A. Bachelot / J. Math. Pures Appl. 81 (2002) 35-65

f |x—| Vo)W (x; —kg, @) — v(x)ﬁ VW (x; —kg, @) dS(x)
X X
|x|=R

= —2iko/ 2@ 8@, —kg, w)dw’ +0(1), R — oo.
S2
We conclude that
2ikO YN / /
g(w)+g S(w', —kg, w)g(@') dw’ = 0. a
52

6. Scattering by a causality violation in a chronological space-time

In this part we prove the completeness of the wave operators in the case where the manifold is chronological but non-globally
hyperbolic:

T = ¢, (6.1)

X # 0. (6.2)
The case of the globally hyperbolic space-tiffier ¢, X = ¢, has been treated by D. Hafner [15]. Thus we assume that:

supg =1 (6.3)
In order to use some energy estimates, we impose the positivity of the total energy,

o< V. (6.4)

First we consider the Cauchy problem with datasg. We show that this problem is well posed despite the existence of
closed null geodesics. That is not entirely surprising siiggis weakly spacelikaccording to the terminology of L. Hormander
who has studied the characteristic Cauchy problem on a globally hyperbolic manifold [19]. Nevertheless, because of the
violation of the causality, we have to be carefull to define the set of the possible initial data.

We observe thak is necessarily confining, hence we cannot invoke Theorem 3.5 to assure the uniqueness. But since the
conserved energ¥ (1) is now positive £, H defined by (3.60), (3.61), are Hilbert spaces, amre u(0) is an isometry front
onto X, for the norms:

1 1
lull2 = Eso(u, 1) = |u© |3, = | 8,u(0)“i% + EHu(O)Hf (6.5)
We have used the equivalent norm Bt (R3):
||f||%:=f|Vf<x>|2+v<x>|f(x)|2dx.

R3

Since U (¢) given by (3.63) is a strongly continuous unitary grougr) on 7, the Stone theorem assures that there exists a
self-adjoint operatoA on H, with dense domai®(A), such that

U =€,
It is easy to characterizB(A) in terms of more regular solutions:
DA ={u©)y; uc&l), eli=(ues&; quect) (6.6)

To state that the space of the admissible Cauchy data is large, we introduce the set:
— 13 1(R3). 213 C :
D:=1{(f.g) € W-(RY) x H*(RY); Af € L7(R}), Af +2 59pg — V.f =0 on aneighborhood, 1 ¢ of o . (6.7)
r
and the Beppo-Levi spadé] (R? \ Xo) as completion o 3°(R3\ o) for the norm (3.11).

Theorem 6.1. We assume thg6.1) and(6.4) are fullfiled. Then we have
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PR3\ p) x C°(R3\ Zo) C D(A), (6.8)
W3 (RS \ Zo) x LZ(R3) c H, (6.9)
DCH. (6.10)

Moreover if the Lebesgue measureqf is zero, then

D=H=wYR3) x LZ(R). (6.11)

Proof. Givene €]0, 1], we put:
Ce:=(1—-¢)C.

We have:
C
o< sup= < 1.
r

We define metrig, by (2.2) where we replad€ by C.. Then the manifoldM, g.) is globally hyperbolic and/;, is a Cauchy
hypersurface for the operator:

c? C
Le:= <1— r—§>33— Ay —2r—§8t8¢ +V.

Hence, given(f, g) € WL(R3) x L2(R2), the Cauchy problem:

ue € COR; WE(RY)),  drue € CORy; L2 (RE)),

(6.12)
Leug =0, us(0) = f, orus (0) =g,

is solved by the usual way thanks to a unitary groupdd’(]Rﬁ) X L%E (Rﬁ), and we have the energy estimate:

2
f]R3<1_ f—§> e (1,0 + | Ve (0, 0)|* + V (0 ue (1, )| *dlx
(6.13)

C2
:fR3<1— r—;)‘g(x)|2—|— V)2 + V)| £ Pdr.
We deduce that the famil§u:)g.. -1 satisfies:

sup supljue (1), < oo, (6.14)
O<e<1lteR

sup sup| d;ue(1)] ;2 < oo. (6.15)
O<e<1lteR ¢

When( f, g) belongs taD, d;u. is a finite energy solution of
2 2\t Ce
Le(Brug) =0, 31‘1/15(0):8, 31 ug(0)=(1- r_2 Af+2r_23¢g_ V.
hence, we get a second estimate:

| Aue@)]72+ |orue )3
2

A c2\1 Ce 2
<Cst. fga (1 - —g) ‘Aug(t, X) + 25 Byt (1, x) — V (X)ue (1, x)
r r

+ | Varue (6, x)| 2+ V) |drue (1. ) [P (6.16)

c2\t Ce
=cSz.fR3<1— r—2> Af(x)—|—2r—23¢g(x) — V@) fx)
< Cst'.sUPgy o (50— O HIASIZ, + 1gI].

We deduce that the famil§i:)o.. -1 satisfies:

2 2 2
+|Ve@)|” + V(x)|g(x)|“dx
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sup sup|| Aue (1)) ;2 < oo, (6.17)
O<e<1lteR

sup sup|dyue ()|, < oc. (6.18)
O<e<lteR

On the one hand (6.14) and (6.18) assure thalg. <1 is eqwcontmuous iO(R,; WL(R2)). On the other hand, (6.15) and
(6.14) show thatd;us)o. <1 iS equicontinuous iCOR,; L (R3)) Now if f andg are compactly supported, sinfg = Lg
for large |x|, we get thatu, (¢, -) and d;u. (¢, -) are supported in a compact that is independent. &then (6.17), 6.18) and
the Sobolev embedding assure thai(z, -))g-¢ <1 is relatively compact irWl(]Rf’;) X L%(RE’;). We conclude with the Ascoli

theorem that there exists, v) € COR;; W(R3) x LZ.(R3)), and a sequencs, — 0T such that:
Ug, — (u,v) in CO(Rt; Wl(Rg) X L%(Ri’)), n— oo.

We get thav; u| o1\ 5 = v. Moreover we have:
OPue, — 02u,  0rdpue, — ddpu in ngCz(R?t’x)), n— 0o,

thus Lu = 0 sinceCg, — C in H2(R3) asn — oo. Therefore we have proved that the subset of the elemerits which
are compactly supported, is included H. Since this subspace is dense7m (6.10) is established. Moreover we have
C(R3\ Zg) x CP(R3\ Zg) C D, thus we have (6.9).

To prove (6.8), we consider the solutiane £ with initial data(f, g) € CS°(R3 \ Zg) x PR3\ o). Letu’ € € the
solution with initial data( ', g") € C°(R3\ Zg) x CPR3\ Xg), wheref’ =g, g’ = (1— C2r~)[Af +2Cr 29,8 — V1.
We put:

t

v:=u—f—/u/(s)ds.
0
We easily check that € £ andv(0) =0, hencev =0 ando,u = u’ € £. Therefore we get (6.8).

To prove (6.11), sinc€g° (R3 \ Xo) is dense inL2 (R3), it is sufficient to establish that
Dy :={f e WY(R3); Af € L?(R3), Af — Vf =0 on a neighborhoot? ; of o},
is dense irwl(]Rf’;). We introduce:
Do:={f¢€ Wl(Rf;); Af —Vf =0 on aneighborhood ; of Xo}.

Given f € Do, we chooseg( € C3°(Vy) suchthaty =1ona neighborhooﬂi’} of Xo. Thenyf e Diand(1—x)f € Wl(Rf’;)

equals to zero om’},. Givene > 0 there existg € C° (R3\ X0) such that|(1— x) f — gll1 < &. Thereforefy := xf +g € Dy
and| f — f1l1 < . We conclude that

Dy = Do.
Let F e D&. Let V be an open neighborhood afp and we assume that its bounday is sufficiently smooth to that the
Dirichlet problem for the Laplacian is well posed. We gut F on ]R?C \V,andf =u in V, whereu is the unique solution of
—Au+Vu=0, ueHl(V), u=F onaV.

Then f € Dy, and we have:

0= /VF-V_f+ VFfdx= / |VF|2—|—V|F|2dx—|—<u,8v_u)H1/2(3v)’H,1/2(av)

R3 R3\V
/ |VF|2+V|F|2dx+/|Vu|2+V|u| dx.
R3\V

We conclude that =0 on]Ri3 \ V. Now, givenn € N*, there exists (n, j) € X, 1< j < Np, such that
N)‘l

SocVu=J B(x(n,j), %)

j=1
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Since(N52.1 Vu = Zo, we get thatF =0 on ]Riﬁ \ Xo. When X is negligible, we conclude that = 0 andDg is dense in
wiR?). O

We now return to the scattering theory. We have seen that the scattering opferiat@n isometry from&y onto &y.
Nevertheless, when the space time is totally vicidlis4#), we can define the wave operatdis™(—) only on the dense
set of the regular wave packet§°, and the range of these operators is not known. Taking advantage of the fact that the
conserved energy is positive wh&n= ¢, we could extend by continuity the wave operators (5.16) previously definé@"bn

but in order to be more concrete, we prefer to directely construct them, by replwéinng by wl x L% in the control of
the asymptotic behaviour, and using a time-dependent method. Despite the violation of the caliga#it§f)( we are able to
develop a strategy la Lax and Phillips [24] because the chronology is respected, and we get

RanWt =RanW™ =&. (6.19)
We need theR-outgoing (R-incoming) subspaces:

D = {F = (f,8) € Ho; Ix| < +(-)t + R= Upg()F =0}, O<R. (6:20)

Proposition 6.2. We assume thg6.1) and(6.4) are fullfiled. Giverua’(_) € &, there exists a uniquet(~) ¢ £ such that
[uO® —ug VO a2 =0 1= e, (6.21)

Moreover, we have

[t e =lug gy (6.22)

Proof. It is sufficient to study the past wave operator. Since
[V3ug®)] 2 0. 0<[aug ]2~ [og )] 2~ 0. 1= —cc,

(6.22) is a consequence of (6.21); that assures the uniqueness. To establish the existenageofirst assume thaty is

a free incoming wave, i.6ug(0), 3;ug(0)) € Dy, for someR > 0. Let Ry be given by (3.5) andy < —R — Rg. Thanks to
Theorem 6.1 there exists a unique solutionf Lu = 0 equal toug for + < fp. Hence (6.21) is satisfied. Now givery € &o,

we choose a sequence of free incoming waugs, € &o, such that

”u&n—uaﬂgo—)O, n— oo.

6.22) implies thatW ~ (u, ) is a Cauchy sequence &h Letu™ :=Ilim,_0c W~ (u, ) € £. We evaluate:
O,n 0,n

1 1
Jum® —ug Ollyrez < clu™ =W Gug | & +clug, —ug |3
+||VxW7(u5,,,)(t) - quan(t)HLz + ||31W7(ua,n)(t) - 3f”6,n(’)“L%'
That concludes the proof.00
Therefore we have proved that the Wave Operators
WO 1 d O oy O (6.23)
extend the wave operators (5.16) defined onlyig?u, and are isometries froy to £. The main result of this part states these

operators are onto.

Theorem 6.3. We assume th¢6.1) and(6.4) are fullfiled. Then for alk € £, there exists a uniqueg(_) € &g such that
R e A 0 (6.24)
Moreover, we have

e =ug I, (6.25)
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The crucial point is the decay of the local energy that we establish by using the RAGE theorem.

Lemma6.4. Letu € £. Then for allR > 0 we have
T

lim ifx/ER(u,t)dtzo. (6.26)
T—+oo T
0

Proof. It is sufficient to consider the case wherg g) € D(A). Then the solution: € £ satisfyingu(0) = f, o;u(0) = g,
belongs ta€1. Thus

due COR; LZ(R) NWIRS) = HL(RD)),  8%u e CO(Ry; L2(RD)).
By using equatior_Lu = 0 we get:
Axu e CO(Ry; L2(RD)),
hence we deduce that
DA C{(f.9) e WHRS) x HY(RD); Af e L2(RD)}, (6.27)
£ llwe + 1A 2 + 18l g2 < cons{ | (f, &) |5 + AL )]|4)- (6.28)
Giveny € Cgo (Rﬁ) we define the cut-off operator

x: (.9 (Xfixg):

(6.28) and the Rellich’s compactness theorem imply thet + i)~ is a compact operator from to Hg. On the other
hand, Lemma 4.1 and the remark that follows it, show thdias no point spectrum. Then the RAGE theorem (see, e.g., [29],
Theorem 1.2.1) assures that
1 T
VF e H, lim = U@)F|,,dr=0.
Jm = [lxvory,

T
0

The result of decay of the local energy immediately follows:

Lemma 6.5. For all R > Rg we have

Jvopg=Juvwbpg =H. (6.29)
teR teR

Proof. Let F be inH, orthogonal th(t)D; for all 7. This condition is equivalent to:
VG e Dy VteR, (U()F,G), =0.
We prove thatF = 0. We choos® < CSO(R,) such thatf 6(r) dt = 1, and we put forj € N:

Fj =j/9(jt)U(t)th.
We easily check thak; — F in H, asj — oco. Moreover
U)Fj—Fj
t
henceF; € D(A). We have also:

N _jzfe’(js)U(s)Fds eH, t—0t,

VG e DY, (UM)Fj, Gy = j/@(js)(U(z +5)F, Gy ds =0.
Therefore it is sufficient to consider the case:

F e D(A),YG e Df.VieR, (U(F,G)y =0. (6.30)
We remark thal/ (t) F € D(A) C Hg and forG € D},

({UOF, Glyyy=(UMF, Gy =0.
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SinceUp(—R) D}, = D we have:
VGoe D, (Uo(—R)U()F, GO)H0 =0,

that to sayUo(—R)U (1) F € D, . We deduce that

s<0, x| < —s+ R=Uy(s —2R)U (1) F(x) =0. (6.31)
By uniqueness of the solution we conclude that

Vs<O,VieR, Uy(s—2R)U)F =U(s)Up(—2R)U(1)F. (6.32)
We need the local norms:

1

I olzm=5

C2
5 f (1—r—2>|g(X)|2+\fo(X)\ZJrV(X)\f(X)Ide,

ISR (6.33)

1
[ 0% mo =5 / g |2 + | Vi £ () Pdlx.

x|SR
Thanks to (3.12) and (6.28) we can compare these norms:
H(f, g)HR,H <CH(f’ g)HR,Ho’
[ e <UL Ol g g + A ] g 3}

SinceF € D(A), Lemma 6.4 implies that

(6.34)

T

1

?[“U(npu,{w [AUGF| g >0, T —ox.
0

Therefore (6.34) assures that gives 0, k e NT, there existgd” > (k + 1) R such that
|UF| g 3¢+ NUTF 5 4, < (6.35)
Applying (3.17) and (6.34) we have:
|Uo(=2R)U(T)F |35 34 < c|Uo(=2R)U(T) F |3 34, < c[UT)F |5 3¢, < ct, (6.36)
[T = 2R)F g 0 < U F| g 5 < (637)
SinceL = L for |x| > Rg, we haveUg(—2R)U(T)F = U(—2R + T)F for |x| > 3R, therefore with (6.36), (6.37), we get:
[Uo(=2R)U(T)F = U(=2R)U(T)F |4, = |Uo(=2R)U(T)F — U(=2R)U(T)F | 35 3, < (¢ + De.
We applyU (2R — T) to find
|U@2R — T)Up(—2R)U(T)F — FHH <(c+De.
By (6.32) withs = 2R — T', we haveUg(—T)U(T)F = U (2R — T)Ug(—2R)U(T)F, hence
|Uo(=T)U(T)F — F| 4, < (c + De.
Finally thanks to (6.31)/o(—T)U(T)F =0 for |x| < T — R, and sincel’ > (k + 1) R we conclude that
VkeNT, |Fliry <(c+De. O

Proof of Theorem 6.3. To prove the uniqueness of the symptotic waves, we cons@euir € &g satisfying (6.24). Then
lug (1) —uf @)l Wixrz = 0 ast — +oo. Since the local energy of the free waves decaies, we gefilfat- u7 | g, =0.

To establish (6.25), we deduce from Lemma 6.4 that there exists oo such thatEg,(u, ;) — 0, asn — oo. Then
V2lullg - Uty 2 = O, Sincel|ud ) lyiyer2 = V2|ug llg, — 0, (6.25) is a consequence of (6.24).

Letu be in€. Lemma 6.5 assures that there exigts R, Fj, € D;go, such that

|U@tn) Fy = u(©) |4, = 0, n— oc.



64 A. Bachelot / J. Math. Pures Appl. 81 (2002) 35-65

We note thalig(t + t,) F = U (¢t + t,) F,, whent + ¢, > 0. We putF,jr := Ug(tn) Fn, and fort), > t, we evaluate
| F = Fy 3y = | Fn = Uo(tp = ) Fp |l gy = | F = Uoltp — tw) Fp |3y = U (tn) Fur = Utp) Fp -

We deduce that,” is a Cauchy sequence iHg. We denoteF* :=lim, oo F,, U (t) := Up(t) F*. We estimate for
t+1t, 20,

Jug @) — U(’)lexL% < o) (FF = FF)| wixr2 T |Uo( + 1) F —u() | WixL2
< V2[FT = Ff |3y, + V2[Ut) Fy = u©@ ] 5,
(6.24) immediately follows. O

We achieve this study by some remarks on the Scattering Opetaifde have shown that even if the chronology is violated
(T # 9), the scattering operator is a well defined isometry¥gnbut in this case, its meaning is somewhat mysterious since we
can construct the Wave Operators onlyéig‘f. When the chronology is not violated, we deduce from the previous theorem that

(wH)~Lis well defined frome to £, and with Proposition 6.2 we conclude that the Scattering Operator is actually defined by:
Si=(wH)tw-. (6.38)
Moreover sinceD;g and Dy, are orthogonal, the scattering operafds causal in the usual sense (e.g., [24]), i.e.
(Ix] < =t = ug (1. x) = 0) = (|x| < —t = uf (t,x) =0),

although the manifold\ is non-causal (it would be preferable to sfys chronological, since this is this property .64 that

assures the so-called causality$)f This is also a consequence of the theorem of Foures and Segal [9], and of the spectral
representation of, Proposition 5.5, since we have stated in Theorem 4.2 (4.18) that there exists no resonance with positive real
part.
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