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We give a rigorous construction of the Dirac Sea for the fermionic quantization in the non-separable
Hilbert spaces. These CAR-representations depend on the Axiom of Choice, hence are not unique,
nevertheless they are unitarily equivalent to the classic Fock representation.

I. INTRODUCTION

The old hole theory of Dirac, where the vacuum is replaced by a sea filled of all the negative energy states, continues
to arouse the interest of physicists and mathematicians despite the severe criticism by Weinberg. For instance the
Dirac sea plays an important role in the theory of the fermionic projector of Finster [9], and recently it appears also
in quantum cosmology [4]. Of the mathematical point of view, a rigorous definition of such a sea is an interesting
issue. In the case of the usual framework of the separable Hilbert spaces, an elegant construction is provided by a
semi-infinite wedge product in the work of Dimock [6] for the free Dirac equation, and for the external field problem
by Deckert and co-authors [5]. At the first glance, this approach heavely depends of the countability of the Hilbert
basis and its generalization to the non-separable Hilbert spaces is not obvious. The purpose of this paper consists in
showing that this goal is achievable with a little work of set theory. This one consists in defining in a coherent way a
suitable notion describing the “parity” of the size of all the subsets of an infinite set X . In short we prove the existence
of a homomorphism π from the Abelian group of the power set of X endowed with the symetric difference, to Z/2Z,
such that π(A) = 0 (resp. 1) if A is a finite part of X with an even (resp. odd) cardinal. The proof that is based
on the technics of the ultrapowers, is strongly inspired by the theory of the numerosities of Benci et alii [2], [3] (a
shorter proof uses powerful arguments from the Boolean Algebras Theory). As regards the axiomatic framework, the
price to pay to be able to treat the case of the non-separable Hilbert spaces, is a triple recourse to some consequences
of the Axiom of Choice (see e.g [12]): 1) for the existence of a Hilbert basis (ex)x∈X on a non-separable Hilbert
space; 2) for the existence of a linear order on the set X that indexes this basis; 3) in the proofs of the existence
of π, we use one of the following three consequences of Zorn’s Lemma: i) the existence of a suitable ultrafilter
on the set of the finite parts of X , ii) Sikorski’s extension theorem, iii) the equivalence between “completeness”
and “injectivity” for the Boolean Algebras. As a consequence, our construction leads to a lot of different quanti-
zations. Fortunately, they are all unitarily equivalent to the classic Fock quantization. Concerning the role of the
non-separable Hilbert spaces in Physics, the negative opinion of Streater and Wightman in PCT, Spin and Statistics,
and All That, is well known. Nevertheless this issue is always matter to debate, see Earman [8] for a highlighting
discussion. We also remark that the non-separable Hilbert spaces naturally arise in loop quantum gravity (see e.g. [1]).

We now introduce our strategy. We first fix the notations by recalling the well known basics of the fermionic
quantization (see e.g. [7], [13], [15]). We consider a complex Hilbert space (h, <;>h) where <;>h is the inner product
linear with respect to the second argument, and we look for a Hilbert space H and an antilinear map Ψ from h to the
space of the linear maps on H satisfying the canonical anticommutation relations (CAR): for any u, v ∈ h we have

{Ψ(u), [Ψ(v)]∗} =< u; v >h IdH, (1)

{Ψ(u),Ψ(v)} = 0, (2)

where {A,B} := AB +BA is the anticommutator of two operators A and B. Taking the adjoint of (2) we also have

{[Ψ(u)]∗, [Ψ(v)]∗} = 0. (3)

Another important consequence of the CAR is that Ψ(u) belongs to the space L(H) of the bounded linear maps on H

and we have

‖Ψ(u)‖L(H) = ‖[Ψ(u)]∗‖L(H) = ‖u‖h. (4)

∗Electronic address: alain.bachelot@math.cnrs.fr; URL: http://al.bachelot.free.fr
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2

The classic representation of the CAR on h is given by choosing the antisymetric Fock space

H = F∧(h) :=

∞
⊕

n=0

h∧n, (5)

and Ψ = a, the usual annihilation operator that is the adjoint of the creation operator a∗, which is nicely expressed
by using the wedge product:

a∗(u) (v1 ∧ v2 ∧ ... ∧ vn) = u ∧ v1 ∧ v2 ∧ ... ∧ vn. (6)

Up to an unitary transform, the Fock quantization is the unique irreductible representation of the CAR on h.

We are now ready to introduce the issue of the Dirac sea in this framework. The idea is that, unlike the classic
Dirac quantum field, which annihilates a particle but creates an anti-particle, the fermionic quantum field should just
be an annihilation operator in a suitable sense: the creation of an antiparticle in the Fock quantization should be
understood as the creation of a hole in the Dirac sea, i.e. the annihilation of a state of negative energy, the Dirac sea
being filled with all these states. This idea has been rigorously implemented by Dimock in [6] when h = h− ⊕ h+ is
separable. In order to point out the role of the separability, we briefly describe his approach based on the semi-infinite
wedge products. In the sequel, if X is a set of integers or ordinals, we put X∗ := X \ {0}. Given a Hilbert basis
(e±j)j∈N∗ of h±, we consider the Hilbert completion H of the free vector space spanned by the formal symbols

eI := ei1 ∧ ei2 ∧ ... (7)

where I = {is, s ∈ N∗} and (is)s∈N∗ ∈ (Z∗)N
∗

is strictly decreasing sequence (for the usual order on Z) satisfying for
s large enough

is+1 = is − 1. (8)

Then the Dirac sea is the vector

ΩD := e−1 ∧ e−2 ∧ e−3 ∧ ... (9)

and the quantum field is the antilinear map Ψ from h to L(H) defined by:

Ψ(ej)ei1 ∧ ei2 ∧ ei3 ∧ ... =

{

0 if ∀s ∈ N, j 6= is,
(−1)s+1ei1 ∧ ei2 ∧ ... ∧ eis−1

∧ eis+1
∧ ... if ∃s ∈ N, j = is.

(10)

The key point in definition (10) is the factor (−1)s that is well defined thanks to the obvious fact that s = s(j, I)
defined by

j = is (11)

is a finite ordinal that is just the cardinal of the subset

X(j, I) := { i ∈ I, i ≥ j}. (12)

A crucial property to obtain the CAR is that

k > j, k ∈ I ⇒ (−1)s(j,I) = −(−1)s(j,I\{k}), (13)

since

k > j, k ∈ I ⇒ s(j, I) = s(j, I \ {k}) + 1. (14)

The situation drastically changes when h is a non-separable Hilbert space. In this case we have to consider a
Hilbert basis (ej)j∈X of h, where X is a totally ordered set of uncountable cardinal | X |= ℵ > ℵ0, and, instead of the
countable wedge products, the straight generalization of (7) and (8) would consist in considering the formal symbols

eI =
∧

j∈I

ej (15)
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where I = {is, s ∈ ℵ∗} is uncountable, and (is)s∈ℵ∗ ∈ Xℵ∗

is a strictly decreasing generalized sequence satisfying for
some a ∈ X

x < a⇒ x ∈ I. (16)

Now given I and j ∈ X , s = s(j, I) solution of (11) is an ordinal that belongs to ℵ and we have to define (−1)s

satisfying (13). Of course the difficulty arises when s is an infinite ordinal. We could try to use the Cantor’s normal
form theorem that assures that s can be uniquely expressed as

s = λ+N,

with N ∈ N and λ is a limit ordinal. Deciding classically that the limit ordinals are even, we could define

(−1)s := (−1)N . (17)

Unfortunately this definition does not assure the key point (13) since (14) can be wrong due to the absorbing property
of the ordinal addition

1 + λ = λ.

For an elementary example, we can take I = {−n; n ∈ N∗} ∪ {−ω} where −ω < −n for any integer n. Then with
j = −ω and k = −n for some integer n, we have s(−ω, I) = ℵ0 and also s(−ω, I \ {−n}) = ℵ0. Therefore with
definition (17) we have

(−1)s(−ω,I) = 1 = (−1)s(−ω,I\{−n})

that contradicts (13). We conclude that the ordinal calculus is not sufficient to associate 1 or −1 to the set X(j, I)
in such a way that (13) is satisfied even if X(j, I) is infinite. To overcome this difficulty, we simply remark that in
the separable case for which X(j, I) is finite, (−1)s(j,I) = 1 if the cardinal of X(j, I) is even and (−1)s(j,I) = −1 if
the cardinal of X(j, I) is odd. Finally we are led to ask a somewhat weird question: what is the parity of the size
of an infinite set? Clearly, in the infinite case, the cardinal is not a tool sufficiently subtle to distinguish the size
of X(j, I) from the size of X(j, I \ {k}). In fact a refined concept of size of an infinite set has been introduced by
Benci and co-authors [2], [3]. It is a hypernatural s and we could define (−1)s in the framework of this theory of the
numerosities, from the parity of s, but we prefer to give a direct construction in the next section. We introduce the
quantum fields in an abstract setting in the third part. We present the application to the Dirac theory in the last
section.

II. PARITY OF AN INFINITE SET

We first introduce some notations. The cardinal of a set X is denoted | X |, P(X) is its power set, and PF (X) is
the set of the finite parts of X . The symetric difference ∆ is defined by

A,B ∈ P(X), A∆B := (A ∪B) \ (A ∩B).

Given an infinite set X we look for a homomorphism π from (P(X),∆) to (Z/2Z,+) such that

∀a ∈ X, π({a}) = 1. (18)

The requirement

π(A∆B) = π(A) + π(B) (19)

is equivalent to the couple of properties

∀A,B ∈ P(X), A ∩B = ∅ ⇒ π (A ∪B) = π(A) + π(B) in Z/2Z, (20)

∀A,B ∈ P(X), B ⊂ A⇒ π (A \B) = π(A) − π(B) in Z/2Z. (21)

If π exists, then (18) and (20) imply that for A ∈ PF (X), π(A) is the usual parity of the cardinal of A, defined as 0
if it is even and 1 if it is odd. The extension of π from PF (X) to the whole P(X) is not at all obvious: its existence
depends on the Axiom of Choice, and then such a π is not unique since we may impose π(X) = 0 or π(X) = 1 as
well.
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Theorem II.1 (Parity function) We consider an infinite set X and p ∈ Z/2Z. Then there exists a homomorphism
π : (P(X),∆) → (Z/2Z,+) satisfying (18) and

π(X) = p. (22)

We present two proofs of this result. The first one, rather long and pedestrian, uses a suitable Ultrafilter. The
second one, short and elegant, has been suggested by the anonymous referee; it is based on a powerful tool of the
Boolean Algebras Theory: either Sikorski’s extension theorem, or the injectivity of {0, 1}.

First proof. We identify the additive group Z/2Z and {0, 1} and we denote I := PF (X) \ {∅}. Given p ∈ {0, 1}, we
define for any i ∈ I

Cp(i) := {j ∈ I; i ⊂ j, | j |∈ 2N+ p} ∈ P(I) \ {∅}. (23)

We have for any i, j ∈ I

Cp(i) ∩ Cp(j) = Cp(i ∪ j), (24)

hence the family Bp := (Cp(i))i∈I is a filter basis on I. Applying the Axiom of Choice, we consider an ultrafilter Up
containing Bp. {0, 1}I being the additive group of the maps from I to Z/2Z, we consider its ultrapower

{0, 1}I/Up := {ϕ̇, ϕ ∈ {0, 1}I}, ϕ̇ := {ψ ∈ {0, 1}I; {i; ϕ(i) = ψ(i)} ∈ Up}. (25)

In fact this ultrapower is just a pair set: since Up is an ultrafilter, either {i ∈ I; ϕ(i) = 0} or {i ∈ I; ϕ(i) = 1}
belongs to Up. We denote pϕ the element of {0, 1} such that {i ∈ I; ϕ(i) = pϕ} ∈ Up. Now for ψ ∈ ϕ̇ we have

{i ∈ I; ψ(i) = pϕ} ⊃ {i ∈ I; ψ(i) = ϕ(i)} ∩ {i ∈ I; ϕ(i) = pϕ} ∈ Up,

hence {i ∈ I; ψ(i) = pϕ} ∈ Up and thus pϕ = pψ, and we may introduce the map p

p : ϕ̇ ∈ {0, 1}I/Up 7−→ p(ϕ̇) := pϕ ∈ {0, 1}. (26)

p is a group isomorphism. It is obviously surjective, it is a homomorphism since

{i; ϕ(i) + ψ(i) = pϕ + pψ} ⊃ {i; ϕ(i) = pϕ} ∩ {i; ψ(i) = pψ} ∈ Up,

hence {i; ϕ(i) + ψ(i) = pϕ + pψ} ∈ Up and thus p(ϕ̇+ ψ̇) = p(ϕ̇) + p(ψ̇), and finally it is injective since

p(ϕ̇) = 0 ⇔ pϕ = 0 ⇔ {i; ϕ(i) = 0} ∈ Up ⇔ ϕ̇ = 0̇.

To any A ∈ P(X) we associate ϕA ∈ {0, 1}I by

∀i ∈ I, ϕA(i) = 0 ⇔| A ∩ i |∈ 2N, ϕA(i) = 1 ⇔| A ∩ i |∈ 2N+ 1,

and we define

π(A) := p(ϕ̇A). (27)

We remark that for any a ∈ X , we have

{i ∈ I; a ∈ i} ∈ Up (28)

since

{i ∈ I; a ∈ i} ⊃ Cp({a}) ∈ Up.

We have

ϕ{a}(i) = 1 ⇔ i ∈ {j ∈ I; a ∈ j},

hence pϕ{a}
= 1 and we deduce that (18) is satisfied. Now for A,B ∈ P(X) with A ∩B = ∅, we have

{i; ϕA∪B(i) = pϕA
+ pϕB

} ⊃ {i; ϕ(A)(i) = pϕA
} ∩ {i; ϕ(B)(i) = pϕB

} ∈ Up

hence pϕA∪B
= pϕA

+ pϕB
and (20) is established. Moreover (21) is a consequence of (18) and (20) since if B ⊂ A we

have π(A) = π(A \B) + π(B). Finally we have

{i; ϕX(i) = p} = {i; | i |∈ 2N+ p} ⊃ Cp({a}) ∈ Up

hence {i; ϕX(i) = p} ∈ Up, and thus π(X) = p.
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Q.E.D.

Second proof. We consider the collection A of the subsets of X that are either finite or co-finite: A is a Boolean
algebra. We define a map π0 : A → {0, 1} as follows: If A is a finite subset of X , then π0(A) = 0 if | A | is even,
otherwise π0(A) = 1. If A is a co-finite subset of X, then π0(A) = p if | X \ A | is even, otherwise π0(A) = 1 − p.
π0 is clearly a Boolean homomorphism from A to {0, 1} considered as a Boolean Algebra. Since {0, 1} is trivially a
complete algebra, π0 can be extended into to a Boolean homomorphism π from P(X) to {0, 1}. The existence of π is
assured either by Sikorski’s extension theorem ([14], p.141, Theorem 33.1) or by the injectivity of {0, 1} due to the
theorem on the equivalence between the completeness and the injectivity ([11], p.141, Theorem 19).

Q.E.D.

We now are ready to deduce the main tool for the quantization, the “ǫ-functions” that replace (−1)s in the definition
of the quantum fields.

Corollary II.2 (“ǫ-function”) Given a partially ordered set (X,≤), there exists a map

ǫ : I ∈ P(X) 7−→ ǫI ∈ {−1,+1}I (29)

satisfying

∀x ∈ X, ǫ{x}(x) = 1, (30)

j, k ∈ I, j < k ⇒ ǫI(k) = −ǫI\{j}(k), (31)

j ∈ I, k ∈ X, j < k ⇒ ǫI(j) = ǫI∪{k}(j). (32)

Proof. We choose a parity function π given by the previous theorem. For I ∈ P(X), x ∈ X , we put Ix := I ∩ {y ∈
X ; y ≤ x}. We obviously have: for any x ∈ X ,

{x}x = {x}, π({x}x) = 1,

for any j, k ∈ I with j < k,

Ik = (I \ {j})k ∪ {j}, π(Ik) = π((I \ {j})k) + 1,

for any j ∈ I and k > j

Ij = (I ∪ {k})j.

Therefore it is sufficient to define for I ∈ P(X), j ∈ I

ǫI(j) := (−1)π(Ij)+1.

Q.E.D.

To make the link with the countable case, we consider X = Z∗ and I = {is, s ∈ N∗} where (is)s∈N∗ ∈ (Z∗)N
∗

is a
strictly decreasing sequence (for the usual order on Z) satisfying (8) for s large enough. We now endow Z

∗ with the
reverse order of the usual order, then ǫI(j) := (−1)s+1 where j = is, satisfies (30), (31) and (32).

III. ABSTRACT QUANTIZATION

We now consider an infinite ordered set (X,≤) and a subset I ⊂ P(X) such that

X is totally ordered, (33)
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∀I ∈ I, ∀A ∈ PF (X), I ∪ A ∈ I, I \A ∈ I. (34)

We also take an ǫ-function given by Corollary II.2.

For the quantization process, X enumerates a Hilbert basis (ex)x∈X of the Hilbert space h of the classical fields,
and I indexes a Hilbert basis of the Hilbert space H on which the quantum fields act. The existence of a linear order
on X is assured by the Ordering Principle which is strictly weaker than the Zermelo Axiom. The ǫ-function will play
the role of (−1)s in the definition of the quantum fields.

We introduce the equivalence relation R on the abelian group (P(X),∆) associated to the subgroup PF (X). R is
defined by

∀A,B ∈ P(X), ARB ⇔ A∆B ∈ PF (X). (35)

Since A = (A ∩B) ⊔ (A ∩ (A∆B)) we also have

ARB ⇔ ∃A′, B′,∈ PF (X), C ∈ P(X), A = A′ ⊔ C, B = B′ ⊔ C. (36)

R is an equivalence relation on P(X) for which we denote P(X)/PF (X) its quotient set and [A]X the equivalence
class of A ∈ P(X). The equivalence class [A]X is also described as

I ∈ [A]X ⇔ ∃IF ∈ PF (X), I = A∆IF , (37)

and the map

IF ∈ PF (X) 7−→ I = A∆IF ∈ [A]X (38)

is a bijection from PF (X) onto [A]X . We note that [∅]X = PF (X) and [X ]X is just the set of the co-finite subsets of
X . Putting I− := IF ∩ A and I+ := IF ∩ (X \A), we also have

∀A ∈ P(X), ∀I ∈ [A]X , ∃I− ∈ PF (A), ∃I+ ∈ PF (X \A), I = (A \ I−) ⊔ I+. (39)

We obviously have for any A ⊂ X :

| [A]X |=| X |, (40)

and since

P(X) =
⊔

[A]X∈P(X)/PF (X)

[A]X , | P(X) |= 2|X|,

we have

| P(X)/PF (X) |= 2|X|. (41)

Moreover I ⊂ P(X) satisfies (34) iff

I =
⋃

A∈I

[A]X . (42)

Now we introduce the free vector space V(I) spanned by I, i.e. we consider the elements I of I as vectors denoted
eI , and V(I) becomes a pre-Hilbert space if we decide I is an orthonormal basis.

The fundamental example arising for the quantization in the separable case is given by:

X = Z
∗ = Z

− ⊔ Z
+, Z

± := {n ∈ Z; ±n ≥ 1}, (43)

and < is just the reverse of the usual strict order on Z. We choose I to be the set of the “maya diagrams” (see e.g.
[10]):

I = {I = (Z− \ I−) ⊔ I+; I± ∈ PF (Z
±)} = [Z−]Z∗ . (44)
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The Dirac sea is the vector

ΩD := eZ− ∈ V([Z−]Z∗). (45)

We easily generalize this example to take into account the non-separable Hilbert spaces for which X is uncountable.
Given two infinite ordinals Λ± we introduce

X = Λ∗
− ⊔ Λ∗

+ (46)

endowed with the total strict order < defined by

∀λ±, λ
′
± ∈ Λ∗

±, λ+ < λ−, λ− < λ′− ⇔ λ− ≺ λ′−, λ+ < λ′+ ⇔ λ′+ ≺ λ+, (47)

where ≺ is the usual strict well order on the ordinals. To generalize (44) and (45), we can take

I = [Λ∗
−]Λ∗

−⊔Λ∗
+
= {I : (Λ∗

− \ I−) ⊔ I+; I± ∈ PF (Λ
∗
±)}, (48)

ΩD := eΛ∗
−
∈ V([Λ∗

−]Λ∗
−⊔Λ∗

+
). (49)

We now choose the Hilbert framework. Given a set E, we introduce the Hilbert space of the complex-valued square
integrable functions on E with respect to the counting measure, that is also the Hilbert closure of the free vector
space V(E) spanned by E,

l2(E) :=







u ∈ C
E ; ‖u‖ :=

(

∑

x∈E

| u(x) |2

)
1
2

<∞







. (50)

We use the canonical Hilbert basis

B(E) :=
{

ex ∈ C
E ; x ∈ E

}

, ∀x, y ∈ E, ex(y) = δx,y, (51)

here δx,y is the Kronecker symbol (δx,x = 1, δx,y = 0 if x 6= y). Then u ∈ l2(E) can be written as

u =
∑

x∈E

cxex, cx ∈ C, (52)

where {x; cx 6= 0} is countable and

‖u‖2 =
∑

x∈E

| cx |2 . (53)

For F ⊂ E we denote PF the orthogonal projector on l2(F )

PF (u) =
∑

x∈F

< ex;u > ex. (54)

For any infinite set X and A ⊂ X , we have

l2(X) = l2(A) ⊕ l2(X \A), l2(P(X)) =
⊕

[A]X∈P(X)/PF (X)

l2([A]X), (55)

and since the elements I of [A]X can be indexed by IF ∈ PF (X) or (I−, I+) ∈ PF (A) × PF (X \ A), we can identify
the following spaces with natural isometries:

l2([A]X), l2(PF (X)), l2(PF (A)× PF (X \A)), l2(PF (A)) ⊗ l2(PF (X \A)), l2([∅]A)⊗ l2([∅]X\A).

We now construct two maps, ψ, the “annihilation operator”, and ψ∗, the “creation operator”, from l2(X) to the
space L(l2(P(X))) of the bounded linear maps on l2(P(X)). Given j ∈ X and I ∈ P(X), we put:

ψ(ej)eI :=

{

0 if j /∈ I,
ǫI(j)eI\{j} if j ∈ I,

(56)
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ψ∗(ej)eI :=

{

0 if j ∈ I,
ǫI∪{j}(j)eI∪{j} if j /∈ I.

(57)

Since ψ(ej) and ψ
∗(ej) map B(P(X)) into B(P(X))∪{0}, we can extend ψ(ej) and ψ

∗(ej) as bounded linear operators
on l2(P(X)) with

‖ψ(ej)‖L(l2(I)) = 1, ‖ψ∗(ej)‖L(l2(I)) = 1. (58)

We note that (30) implies that

ψ(ej)e{j} = e∅, ψ∗(ej)e∅ = e{j}. (59)

The physical interpretation of these operators is classic: ψ(ej) annihilates the state e{j} and ψ∗(ej) creates the state
e{j}. We also have with (30), (31) and (32)

j < k ⇒ ψ∗(ek)ψ
∗(ej)e∅ = −e{j,k}, ψ∗(ej)ψ

∗(ek)e∅ = e{j,k} (60)

More generally, we arrive to the fundamental algebraic properties: ψ(ej) and ψ∗(ej) are adjoint to each other and
satisfy the canonical anticommutation relations (CAR).

Lemma III.1 For any j, k ∈ X, we have

ψ∗(ej) = [ψ(ej)]
∗
, (61)

{ψ(ej), ψ
∗(ek)} = δjkId, (62)

{ψ(ej), ψ(ek)} = 0, (63)

{ψ∗(ej), ψ
∗(ek)} = 0. (64)

For any A ⊂ X, ψ(ej) and ψ
∗(ek) leave invariant l2([A]X).

Proof. To prove (61) it is sufficient to establish for any I, J ∈ I that:

〈ψ(ej)eI ; eJ〉 = 〈eI ;ψ
∗(ej)eJ〉 . (65)

We have

〈ψ(ej)eI ; eJ〉 =

{

0 if j /∈ I,
ǫI(j)δI\{j},J if j ∈ I,

(66)

〈eI ;ψ
∗(ej)eJ 〉 =

{

0 if j ∈ J,
ǫJ∪{j}(j)δJ∪{j},I if j /∈ J.

(67)

Therefore 〈ψ(ej)eI ; eJ〉 and 〈eI ;ψ∗(ej)eJ 〉 are non zero iff j /∈ J and I = J ∪ {j}. Moreover in this case they are
equal to ǫI(j). That proves (65).

Now we consider j ∈ I and we evaluate

ψ(ej)ψ
∗(ej)eI = 0, ψ∗(ej)ψ(ej)eI = ǫI(j)ψ

∗(ej)eI\{j} = ǫI(j)ǫI(j)eI = eI

hence we have

j ∈ I ⇒ {ψ(ej), ψ
∗(ej)}eI = eI . (68)

Then we consider j /∈ I and we evaluate

ψ∗(ej)ψ(ej)eI = 0, ψ(ej)ψ
∗(ej)eI = ǫI∪{j}(j)ψ(ej)eI∪{j} = ǫI∪{j}(j)ǫI∪{j}(j)eI = eI
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that implies

j /∈ I ⇒ {ψ(ej), ψ
∗(ej)}eI = eI . (69)

Now we take j 6= k. 1) We first assume j ∈ I and k /∈ I. We compute:

ψ(ej)ψ
∗(ek)eI = ǫI∪{k}(j)ǫI∪{k}(k)e(I\{j})∪{k}, (70)

ψ∗(ek)ψ(ej)eI = ǫI(j)ǫ(I\{j})∪{k}(k)e(I\{j})∪{k}. (71)

If j < k, then ǫI∪{k}(j) = ǫI(j) by (32), ǫ(I\{j})∪{k}(k) = −ǫI∪{k}(k) by (31) and thus

{ψ(ej), ψ
∗(ek)}eI = 0. (72)

If k < j, then ǫI∪{k}(j) = −ǫI(j) by (31), ǫ(I\{j})∪{k}(k) = ǫI∪{k}(k) by (32) and thus (72) is satisfied again. 2) We
assume j /∈ I and k ∈ I. Then we have:

ψ∗(ek)eI = 0 = ψ(ej)eI , (73)

hence (72) is trivially satisfied. 3) We assume j ∈ I and k ∈ I. Then k ∈ I \ {j} and so

{ψ(ej), ψ
∗(ek)}eI = ψ∗(ek)ψ(ej)eI = ǫI(j)ψ

∗(ek)eI\{j} = 0. (74)

4) Finally we assume j /∈ I and k /∈ I. Then ψ(ej)eI = 0 and j /∈ I ∪ {k}, hence

{ψ(ej), ψ
∗(ek)}eI = ψ(ej)ψ

∗(ek)eI = ǫI∪{k}(k)ψ(ej)eI∪{k} = 0, (75)

and the proof of (62) is complete.

To prove (63), we distinguish the different cases again. 1) If j /∈ I, k /∈ I then ψ(ej)eI = ψ(ek)eI = 0 and obviously
we have

{ψ(ej), ψ(ek)}eI = 0. (76)

2) If j /∈ I, k ∈ I, we have ψ(ej)eI = 0 and

{ψ(ej), ψ(ek)}eI = ǫI(k)ψ(ej)eI\{k} = 0 (77)

since j /∈ I \ {k}. 3) The case j ∈ I, k /∈ I is analogous. 4) Now if j ∈ I, k ∈ I, j 6= k, we compute

{ψ(ej), ψ(ek)}eI =
(

ǫI(k)ǫI\{k}(j) + ǫI(j)ǫI\{j}(k)
)

eI\{j,k}. (78)

If j < k, then (32) implies that ǫI(j) = ǫI\{k}(j) and (31) assures that ǫI(k) = −ǫI\{j}(k), and we conclude that
(76) follows from (78). 5) Finally if j = k ∈ I, ψ(ej)ψ(ej)eI = ǫI(j)ψ(ej)eI\{j} = 0. The proof of (63) is achieved.
Moreover (64) follows from (63) by taking the adjoint.

To end, since the quantum fields map δI to zero, or ±δI\{j}, or ±δI∪{j}, they leave invariant l2([A]X).

Q.E.D.

We now define ψ and ψ∗ on the whole space l2(X) by the usual way used in the separable case [6]. If u ∈ l2(X) is
expressed as

u =
∑

k∈N

ckejk , ck ∈ C,
∑

k∈N

| ck |2<∞, (79)

we introduce for any N ∈ N

ψN (u) :=
∑

k≤N

c∗kψ(ejk), ψ∗
N (u) :=

∑

k≤N

ckψ
∗(ejk) = [ψN (u)]∗. (80)
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Given two integers N,M with M ≥ N + 1, we deduce from (62) that for any V ∈ l2(P(X)) we have

< V ; {ψM (u)− ψN (u), ψ∗
M (u)− ψ∗

N (u)}V >=

(

M
∑

k=N+1

| ck |2

)

‖V ‖2.

Therefore

‖ψM (u)− ψN (u)‖2L(l2(P(X))) + ‖ψ∗
M (u)− ψ∗

N (u)‖2L(l2(P(X))) ≤
M
∑

k=N+1

| ck |2 .

We conclude that we may define the quantum fields

ψ(u) := lim
N→∞

ψN (u), ψ∗(u) := lim
N→∞

ψ∗
N (u) in L(l2(P(X))). (81)

The previous lemma directly implies the main properties of the quantum fields:

Theorem III.2 ψ is an anti-linear map from l2(X) to L(l2(P(X))) and we have for any u, v ∈ l2(X)

[ψ(u)]∗ = ψ∗(u), (82)

‖ψ(u)‖L(l2(P(X))) = ‖u‖l2(X), (83)

{ψ(u), ψ∗(v)} =< u, v > Idl2(P(X)), (84)

{ψ(u), ψ(v)} = 0, (85)

{ψ∗(u), ψ∗(v)} = 0, (86)

∀A ⊂ X, ∀u ∈ l2(X), ψ(u)l2([A]X) ⊂ l2([A]X), (87)

∀A ⊂ X, ∀u ∈ l2(X), PA(u) = 0 ⇒ ψ(u)eA = 0, (88)

∀A ⊂ X, ∀u ∈ l2(X), PX\A(u) = 0 ⇒ ψ∗(u)eA = 0. (89)

The quantum field provided by the previous theorem is not unique since it depends on the choices of the linear order
on X , and the function ǫ. Nevertheless, the representation of the CAR on l2(X) given by (ψ, l2([A]X)) is actually
unique up to an unitary transform and it depends only on A and X \A. We denote

ℵ− :=| A |, ℵ+ :=| X \A | . (90)

We take a bijection θ− from A onto ℵ− and a bijection θ+ from X \ A onto ℵ+. We denote θ the bijection from X
onto ℵ− ⊔ ℵ+ defined by

j ∈ A⇒ θ(j) := θ−(j), j ∈ X \A⇒ θ(j) := θ+(j). (91)

Therefore the map

u ∈ l2(X) 7−→ u ◦ θ−1 ∈ l2(ℵ− ⊔ ℵ+) = l2(ℵ−)⊕ l2(ℵ+) (92)

is an isometry.
We consider an anti-unitary operator C on l2(ℵ−)⊕ l2(ℵ+) and we introduce the fermionic Fock space

HF := F∧(Cl2(ℵ−))⊗F∧(l2(ℵ+)). (93)
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11

The Fock quantization (HF ,ΨF) on l
2(ℵ−)⊕l2(ℵ+) is defined by choosing the antilinear map, ΨF , from l2(ℵ−)⊕l2(ℵ+)

to L(HF ) defined by

ΨF(u− ⊕ u+) := a∗−(Cu−)⊗ (−1)N+ + Id⊗ a+(u+), u± ∈ l2(ℵ±), (94)

where a∗− (resp. a+ ) is the creation (resp. annihilation) operator on F∧
(

Cl2(ℵ−)
)

(resp. F∧
(

l2(ℵ+)
)

), and N+ is

the number operator on F∧(l2(ℵ+)). The Fock vacuum is the vector

ΩF := (1, 0, 0, ...) ∈ [Cl2(ℵ−)]
∧0 ⊗ [l2(ℵ−)]

∧0 (95)

that obviously satisfies

∀u± ∈ l2(ℵ±), ΨF(u+)ΩF = 0, [ΨF(u−)]
∗ΩF = 0. (96)

We know that this representation is irreducible.

Theorem III.3 For any A ⊂ X, the quantization (ψ, l2([A]X) is an irreducible representation of the CAR on l2(X),
moreover there exists a unitary transformation UA from HF onto l2([A]X) such that for any u ∈ l2(X) we have

ψ(u) = UAΨF

(

u ◦ θ−1
)

U
−1
A on l2([A]X). (97)

Proof. The irreducibility of the representation (ψ, l2([A]X) follows from (97) since the Fock representation is
irreducible. We express any subset IF ∈ PF (X) as a finite decreasing sequence

IF = {jn 1 ≤ n ≤ N, jN < jN−1 < ... < j1},

and if ϕ = ψ, ψ∗ we denote

∏

j∈IF

ϕ(ej) := ϕ(ejN )ϕ(ejN−1
)...ϕ(ej1 ),

and for ϕ = ΨF , Ψ
∗
F we denote

∏

j∈IF

ϕ(eθ(j)) := ϕ(eθ(jN ))ϕ(eθ(jN−1))...ϕ(eθ(j1)).

We note that (39) assures that any I ∈ [A]X can be uniquely written as I = (A \ I−) ⊔ I+, and we have

∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA = εeI , ε ∈ {−1, 1}.

We conclude that the set






∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA; I− ∈ PF (A), I+ ∈ PF (X \A)







, (98)

is a Hilbert basis of l2([A]X).
Since {eθ−(j); j ∈ A} is a Hilbert basis of l2(ℵ−) and {eθ+(j); j ∈ X \ A} is a Hilbert basis of l2(ℵ+), we know

that






∏

j∈I+

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF(eθ−(k))ΩF ; I− ∈ PF (A), I+ ∈ PF (X \A)







(99)

is a Hilbert basis of HF . We define the unitary transformation UA from HF onto l2([A]X) by putting

UA





∏

j∈I+

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF(eθ−(k))ΩF



 =
∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA. (100)
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Now to prove (97) it is sufficient to show that for anay l ∈ X , I− ∈ PF (A), I+ ∈ PF (X \A) we have

ψ(el)
∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA = UAΨF

(

eθ(l)
)

∏

j∈I+

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF (eθ−(k))ΩF . (101)

The CAR assure that:

1) If l /∈ I+ there exists ε ∈ {−1,+1} such that

ψ(el)
∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA =

{

0 if l /∈ A,
ε
∏

j∈I+
ψ∗(ej)

∏

k∈I−∪{l} ψ(ek)eA if l ∈ A,

ΨF

(

eθ(l)
)

∏

j∈I+

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF(eθ−(k))ΩF =

{

0 if l /∈ A,
ε
∏

j∈I+
Ψ∗

F(eθ+(j))
∏

k∈I−∪{l} ΨF(eθ−(k))ΩF if l ∈ A,

and we conclude that (101) is satisfied;

2) If l ∈ I+ there exists ε ∈ {−1,+1} such that

ψ(el)
∏

j∈I+

ψ∗(ej)
∏

k∈I−

ψ(ek)eA = ε
∏

j∈I+\{l}

ψ∗(ej)
∏

k∈I−

ψ(ek)eA,

ΨF

(

eθ(l)
)

∏

j∈I+

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF(eθ−(k))ΩF = ε
∏

j∈I+\{l}

Ψ∗
F(eθ+(j))

∏

k∈I−

ΨF(eθ−(k))ΩF ,

hence (101) is satisfied again. The proof is complete.

Q.E.D.

We deduce a form of the Shale-Stinespring criterion of implementation of unitary operators, adapted to our quan-
tization.

Corollary III.4 Given A ⊂ X, let U be an unitary operator on l2(X) = l2(A) ⊕ l2(X \ A). Then there exists a
unitary operator U on l2([A]X) satisfying for any u ∈ l2(X)

ψ(Uu) = Uψ(u)U−1 (102)

if and only if PAUPX\A and PX\AUPA are Hilbert-Schmidt operators.

Proof. With the previous notations we have

ψ(Uu) = UAΨF((Uu) ◦ θ
−1)U−1

A = UAΨF(U(u ◦ θ−1))U−1
A

where U is the unitary operator on l2(ℵ− ⊔ ℵ+) defined by

v ∈ l2(ℵ− ⊔ ℵ+) 7−→ Uv := [U(v ◦ θ)] ◦ θ−1.

Therefore U exists and satisfies (102) iff U is implementable in the Fock representation of l2(ℵ−)⊕ l2(ℵ+). The famous
theorem of Shale and Stinespring states that a necessary and sufficient condition is that Pℵ−UPℵ+

and Pℵ+
UPℵ− are

Hilbert-Schmidt operators. We have

Pℵ−UPℵ+
v = [PAUPX\A(v ◦ θ)] ◦ θ

−1

hence we deduce that
∑

y,y′∈ℵ−⊔ℵ+

|< Pℵ−UPℵ+
ey; ey′ >|

2 =
∑

y−∈ℵ−

∑

y+∈ℵ+

|< Uey+ ; ey− |2

=
∑

j−∈A

∑

j+∈X\A

|< Uej+ ; ej− |2

=
∑

j,j′∈X

|< PAUPX\Aey; ey′ >|
2 .

(103)

We conclude that Pℵ−UPℵ+
is Hilbert-Schmidt on l2(ℵ− ⊔ ℵ+) iff PAUPX\A is Hilbert-Schmidt on l2(X). And the

same holds for Pℵ+
UPℵ− and PX\AUPA. The proof is complete.
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Q.E.D.

Finally we prove that, up to a unitary transform, our irreducible representations depend only on | A | and | X \A |.
We consider two totally ordered infinite sets Xi, i = 1, 2 and two epsilon functions ǫi given by Corollary IV.2, and
the quantum fields ψi defined on l2(Xi) as previously. Let Ai be in P(Xi) such that

| A1 |=| A2 |, | X1 \A1 |=| X2 \A2 |, (104)

and we choose a bijection Θ from X1 onto X2 satisfying

Θ(A1) = A2. (105)

Theorem III.5 There exists a unitary transform U from l2([A2]X2
) onto l2([A1]X1

) such that for any u2 ∈ l2(X2)
we have

ψ2(u2) = U
−1ψ1(u2 ◦Θ)U on l2([A2]X2

). (106)

Proof. We denote ℵ− :=| Ai |, ℵ+ :=| Xi \ Ai |. We introduce a bijection θi from Xi onto ℵ− ⊔ ℵ+ such
that θi(Ai) = ℵ−, θi(Xi \ Ai) = ℵ+. The previous Theorem assures there exists a unitary transform Ui from
F∧(Cl2(ℵ−))⊗F∧(l2(ℵ+)) onto l

2([Ai]Xi
) such that for any ui ∈ l2(Xi) we have

ψi(ui) = UiΨF

(

ui ◦ θ
−1
i

)

U−1
i . (107)

Now we introduce an unitary operator T on l2(ℵ−)⊕ l2(ℵ+) by putting

T : v ∈ l2(ℵ−)⊕ l2(ℵ+) 7−→ v ◦ θ2 ◦Θ ◦ θ−1
1 ∈ l2(ℵ−)⊕ l2(ℵ+). (108)

Since T leaves invariant l2(ℵ±) it is implementable in the Fock representation: there exists a unitary operator T on
F∧(Cl2(ℵ−))⊗F∧(l2(ℵ+)) such that for any v ∈ l2(ℵ−)⊕ l2(ℵ+) we have

ΨF(Tv) = TΨF(v)T
−1.

Since the previous Theorem assures that there exist unitary tranformations UAi
from HF onto l2([Ai]Xi

) such that
for any ui ∈ l2(Xi)

ψi(ui) = UAi
ΨF

(

ui ◦ θ
−1
i

)

U
−1
Ai

on l2([Ai]Xi
),

we compute

ψ1(u2 ◦Θ) = U1ΨF

(

u2 ◦ θ
−1
2 ◦ (θ2 ◦Θ ◦ θ−1

1 )
)

U
−1
1

= U1TΨF

(

u2 ◦ θ
−1
2

)

T
−1

U
−1
1

= U1TU
−1
2 ψ2(u2)U2TU

−1
1 .

(109)

Now it is sufficient to choose

U := U1TU
−1
2 .

Q.E.D.

Taking X1 = X2, A1 = A2, Θ = Id, we immediately deduce the following

Corollary III.6 Given an infinite set X, let ψ1, ψ2 be the quantizations associated to two linear orders on X and
two ǫ-functions. Then for any A ⊂ X there exists a unitary operator U on l2([A]X) such that for any u ∈ l2(X) we
have

ψ2(u) = U
−1ψ1(u)U on l2([A]X). (110)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
67

78
6



14

IV. APPLICATION TO THE DIRAC THEORY

We consider two Hilbert spaces h±, possibly non-separable, and we define

h = h− ⊕ h+, (111)

and we denote P± the orthogonal projector on h±. Invoking the Axiom of Choice, we take two Hilbert basis (ej)j∈X±

of h±. We put

X := X− ⊔X+, (112)

then (ej)j∈X is a Hilbert basis of h, and using the Axiom of Choice again, we endow X with a total order. Finally,
we use a last time this Axiom to get an ultrafilter on PF (X) \ {∅} to obtain an ǫ-function given by Corollary II.2. ψ
being the quantum field on l2(X) given by Theorem III.2, (ψ, l2([X−]X) is an irreducible representation of the CAR
on l2(X). Now we introduce the canonical isometry J from h onto l2(X),

u ∈ h 7−→ J (u) = (< ej ; u >)j∈X ∈ l2(X), (113)

and we define a quantum field on h by putting

ΨD(u) := ψ (J (u)) ∈ L(HD), HD := l2([X−]X). (114)

The Dirac sea describing the state fulfilled by h− is the vector

ΩD := eX− ∈ HD. (115)

These mathematical objects have the usual meaning of the Dirac theory: h+(−) is the space of the classical solutions
of positive (negative) energy. The quantum field ΨD is an operator of annihilation: ΨD(ej) annihilates the state ej ,
therefore it annihilates a particle in the state ej when j ∈ X+, and it creates a hole in the Dirac sea when j ∈ X−.
We shall compare with the classic Fock quantization defined by the Hilbert space

HF := F∧ (Ch−)⊗F∧ (h+) , (116)

the Fock vacuum vector

ΩF := (1, 0, 0, 0...) ∈ [Ch−]
∧0 ⊗ [h+]

∧0
, (117)

and the quantum field

ΨF(u) := a∗−(CP−u)⊗ (−1)N+ + Id⊗ a+(P+u) ∈ L (HF) , (118)

where a∗− (resp. a+ ) is the creation (resp. annihilation) operator on F∧ (Ch−) (resp. F∧ (h+)), N+ is the number
operator on F∧(h+) and C is an anti-unitary operator on h. Now h+ is the one-particle space, Ch− is the one-
antiparticle space, and ΨF(ej) annihilates a particle if j ∈ X+ and creates an antiparticle if j ∈ X−.

Theorem IV.1 (ΨD,HD) defined by (114) is an irreducible representation of the CAR on h. All the representations
obtained by changing the total order on X, or the ǫ-function, or the Hilbert basis, are unitarily equivalent. Moreover
there exists a unitary transform U from HF onto HD such that

ΩD = UΩF , (119)

∀u ∈ h, ΨD(u) = UΨF(u)U
−1. (120)

Proof. If we change the total order on X or the ǫ-function, Corollary III.6 shows that we obtain a new representation
that is unitarily equivalent to the previous one. More generally, if we take another basis (e′j)j∈X′

±
of h±, Theorem

III.5 assures that the quantizations built from these two choices of basis are unitarily equivalent. Moreover, if we
take an anti-unitary transform C on h, Theorem III.3 implies that these quantizations are unitarily equivalent to the
Fock quantization ΨF on l2(ℵ−)⊕ l2(ℵ+) where X± = ℵ± = dim(h±) and C = JCJ−1, which is obviously unitarily
equivalent to the classic Fock quantization on h− ⊕ h+.
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Q.E.D.

We introduce a general setting for the abstract Dirac equations that have the form

i
dψ

dt
= Hψ, (121)

with the following assumptions:
1) H is a densely defined selfadjoint operator on h with domain D(H);
2) there exist two densely defined selfadjoint operators H± on h± with domain D(H±) such that

0 ≤ H+, (122)

H = H− ⊕H+, D(H) = D(H−)⊕D(H+); (123)

3) There exists an anti-unitary operator C on h such that,

Ch± = h∓, CP± = P∓C, (124)

CD(H±) = D(H∓), CH = −HC. (125)

In fact these assumptions imply that

H− ≤ 0 (126)

since we have:

0 ≤< P+u;H+P+u >=< CH+P+u; CP+u >

=< CP+Hu;P−Cu >=< P−CHu;P−Cu >

= − < P−HCu;P−Cu >= − < H−P−Cu;P−Cu > .

The time evolution of the classical Dirac fields is given by the unitary group e−itH = e−itH− ⊕ e−itH+ on h, that
leaves invariant h±.The time evolution of the quantum field is defined for t ∈ R, u ∈ h by putting:

ΨD(t, u) := ΨD
(

eitHu
)

. (127)

Theorem IV.2 For any t ∈ R, (ΨD(t, .),HD) is an irreductible representation of the CAR on h and for any u ∈ D(H)
the map t 7→ ΨD(t, u) ∈ L(HD) is a strongly differentiable function satisfying

i
d

dt
ΨD(t, u) = ΨD(t,Hu), ΨD(0, u) = ΨD(u). (128)

Moreover there exists a densely defined self-adjoint operator HD on HD such that

0 ≤ HD, (129)

∀t ∈ R, ∀u ∈ h, ΨD(t, u) = eitHDΨD(u)e
−itHD . (130)

Proof. The first assertion is obvious since eitH is unitary. Moreover if u ∈ D(H), the map t 7→ eitHu belongs to
C1(Rt; h)∩C0(Rt;D(H)), therefore, since u 7→ ΨD(u) is an antilinear bounded map, we can differentiate ΨD(t, e

itHu)
and we obtain (128)). Now since Ch− = h+, we consider HF = F∧(h+) ⊗ F∧(h+), and the positive densely defined
self-adjoint operator on HF

HF := dΓ(H+)⊗ Id+ Id⊗ dΓ(H+), (131)

where Γ is the usual second-quantization functor. Therefore, using unitary operator U of Theorem IV.1, the operator

HD := UHFU
−1 (132)
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is positive, densely defined and self-adjoint on HD. We have:

eitHF = Γ
(

eitH+
)

⊗ Γ
(

eitH+
)

, (133)

eitHD = UeitHFU
−1. (134)

We achieve the proof by writting

ΨD(e
itHu) = UΨF(e

itHu)U−1

= U
(

a∗−(CP−e
itHu)⊗ (−1)N+ + Id⊗ a+(P+e

itHu)
)

U
−1

= U
(

a∗−(e
itH+P+Cu)⊗ (−1)N+ + Id⊗ a+(e

itH+P+u)
)

U
−1

= UeitHFΨF(u)e
−itHFU

−1

= eitHDΨD(u)e
−itHD .

(135)

Q.E.D.
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