ANNEE UNIVERSITAIRE 2010/2011

SESSION 2 D'AUTOMNE

Parcours: MHT UE: MHT522

Épreuve : Calcul intégral

Date : 6 juin 2011 Heure : 14 h Durée : 3 h
Documents : Non autorisée Calculatrice : Non autorisée

Pôle Licence | Épreuve de V. Bruneau

DISVE

Dans tout le sujet, μ désigne la mesure de Lebesgue.

Question de cours 1 : Enoncer le théorème donnant la continuité d'une intégrale à paramètre.

Exercice 1. Soit T le triangle de \mathbb{R}^2 , de sommets (0,0), (1,0) et (0,1). En justifiant tous les calcule, calculer

$$\int_T (x+y^2)y \ d\mu(x,y).$$

Exercice 2. Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$, mesurable, bornée sur \mathbb{R}^+ .

a. Montrer que pour tout t > 0, $x \mapsto \frac{1}{1+t^2x^2}f(x)$ est intégrable sur \mathbb{R}^+ . Pour t > 0, on définit alors

$$F(t) = \int_{\mathbb{R}^+} \frac{1}{1 + t^2 x^2} f(x) d\mu(x).$$

- **b.** Montrer que F est de classe C^1 sur $]0, +\infty[$ et déterminer sa dérivée.
- ${f c.}$ Donner un exemple de fonction f pour laquelle F serait continue en 0. Justifier.
- **d.** Donner un exemple de fonction f pour laquelle F ne serait pas continue en 0. Justifier.

Exercice 3. Soient $f \in L^p(\mathbb{R}^n)$ et $g \in L^q(\mathbb{R}^n)$, $1 \le p \le q$.

a. Soit f une fonction mesurable positive sur \mathbb{R}^n . Montrer que pour tout $t \in [0,1)$, et $1 \leq p \leq q$,

$$\int_{I\!\!R^n} f(x)^{(1-t)p+tq} dx \leq \Big(\int_{I\!\!R^n} f^p(x) dx\Big)^{1-t} \; \Big(\int_{I\!\!R^n} f^q(x) dx\Big)^t.$$

(Indication : on pourra appliquer l'inégalité de Hölder en introduisant (p',q') définis par $\frac{1}{p'}=1-t$ et $\frac{1}{q'}=t$)

b. En déduire que pour tout $r \in [p,q]$, $L^p \cap L^q \subset L^r$.

Exercice 4.

Soit $\mathcal{S}(I\!\!R)$, l'espace des fonctions à décroissance rapide sur $I\!\!R$:

$$\mathcal{S}(I\!\!R) = \{ u \in \mathcal{C}^\infty(I\!\!R), \, \forall \alpha \in I\!\!N, \, \forall \beta \in I\!\!N, \, x \mapsto x^\alpha \frac{d^\beta u}{dx^\beta}(x) \text{ est bornée sur } I\!\!R \}.$$

Pour $f \in \mathcal{S}$, on note \hat{f} la transformée de Fourier de f :

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ix\xi} f(x) d\mu(x).$$

- a. Pour quoi la transformée de Fourier d'un élément de $\mathcal{S}(\mathbb{R})$ est bien définie? A quel espace appartient la transformée de Fourier d'un élément de $\mathcal{S}(\mathbb{R})$?
 - **b.** Pour $u \in \mathcal{S}(\mathbb{R})$ montrer que

$$\| u - u'' \|_{L^2}^2 = \int_{\mathbb{R}} (1 + \xi^2) |\hat{u}(\xi)|^2 d\xi = \| u \|_{L^2}^2 + \| u'' \|_{L^2}^2.$$

c. Pour $u \in \mathcal{S}(\mathbb{R})$ exprimer $||u'||_{L^2}$ en fonction de \hat{u} et montrer que

$$\| u' \|_{L^2}^2 \le \frac{1}{2} (\| u \|_{L^2}^2 + \| u'' \|_{L^2}^2).$$

d. Pour $u \in \mathcal{S}(\mathbb{R})$ montrer qu'il existe c > 0 et C > 0 tels que

$$c \parallel u - u'' \parallel_{L^2} \le \parallel u + u' - u'' \parallel_{L^2} \le C \parallel u - u'' \parallel_{L^2}.$$