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Abstract: This paper deals with the propagation of the gravitational waves in the
Poincaré patch of the 5-dimensional Anti-de Sitter universe. We construct a large family
of unitary dynamics with respect to some high order energies that are conserved and
positive. These dynamics are associated with asymptotic conditions on the conformal
time-like boundary of the universe. This result does not contradict the statement of
Breitenlohner-Freedman that the hamiltonian is essentially self-adjoint in L2 and thus
accordingly the dynamics is uniquely determined. The key point is the introduction
of a new Hilbert functional framework that contains the massless graviton which is not
normalizable in L2. Then the hamiltonian is not essentially self-adjoint in this new space
and possesses a lot of different positive self-adjoint extensions. These dynamics satisfy
a holographic principle: there exists a renormalized boundary value which completely
characterizes the whole field in the bulk.

1. Introduction

The 5-dimensional Anti-de Sitter space-time Ad S5 plays a fundamental role in string
cosmology and has given rise to a lot of works (see e.g. [8,14]). An important geometrical
framework is the Poincaré patch P of Ad S5, defined by

P := Rt × R
3
x×]0,∞[z, gμνdxμdxν = 1

z2

(
dt2 − dx2 − dz2

)
.

P is a lorentzian manifold and the crucial point is that it is not globally hyperbolic : the
conformal boundary Rt ×Rx ×{z = 0} is time-like and the question arises to determine
the possible boundary conditions on this horizon, satisfied by the gravitational waves
propagating in the bulk P . These fields obey the D’Alembert equation

�gu = 0, �gu := |g |− 1
2 ∂μ

(
|g | 1

2 gμν∂νu
)
. (1.1)
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If we put� =: z− 3
2 u Eq. (1.1) in P takes the very simple form of the free wave equation

on the 1+4-dimensional half Minkowski space-time Rt × R
3
x×]0,∞[z , perturbed by a

singular cartesian potential 15
4z2 :

(
∂2

t −�x − ∂2
z +

15

4z2

)
� = 0, in Rt × R

3
x×]0,∞[z . (1.2)

Unlike the Randal-Sundrum RS2-model investigated in [3], for which this equation is
considered only for z > 1, we have to take account of the singularity at z = 0, and
we are mainly interested in the role of the conformal boundary. More precisely, in this
work, we address three questions:

(i) Since P is not globally hyperbolic, the dynamics is not a priori well defined with-
out some boundary condition imposed on the time-like horizon {z = 0}. The usual
opinion is that such a supplement constraint is not necessary because the Breiten-
lohner-Freedman condition is satisfied for the gravitational waves ([6,10,19] and
App. of [2]), and so the hamiltonian −�x − ∂2

z + 15
4z2 is essentially self-adjoint

on C∞
0 (R

3
x×]0,∞[z) in the Hilbert space H chosen to be L2(R3

x×]0,∞[z). As
a consequence there exists a unique dynamics in the functional framework of the
fields with finite energy ([1,4,10]):

E(�) :=
∫

R3

∫ ∞

0
|∇t,x,z�(t, x, z) |2 +

15

4z2 |�(t, x, z) |2 dxdz < ∞. (1.3)

In fact this constraint implies an implicit Dirichlet condition on the boundary of
the universe,

�(t, x, 0) = 0, (1.4)

and these gravitational waves are called Friedrichs solutions. Nevertheless this
result of uniqueness is not the end of the story because it depends deeply on the
choice of the Hilbert space H (or the choice of the energy E(�)). In this paper
we show that we can perform a rich variety of different unitary dynamics for the
gravitational waves by changing the choice of the conserved energy. We construct
a Hilbert space H such that −�x − ∂2

z + 15
4z2 is not essentially self-adjoint on

C∞
0 (R

3
x×]0,∞[z) and admits many self-adjoint extensions associated with differ-

ent boundary conditions at z = 0 of asymptotic type.
(ii) Another belief is that this cosmological model with a time-like horizon is not

physically realistic since the massless graviton �G(t, x, z) := z− 3
2 φ(t, x), where

∂2
t φ−�xφ = 0, is not normalizable (in the sense of the L2 norm). Otherwise, the

interest of such non normalizable fields has been emphasized in [15]. In this paper
we prove there exists an infinity of pairwise different unitary dynamics for which
this graviton is normalizable (in the sense of the new Hilbert space that contains
all the fields with the same singularity). Moreover these dynamics are not trivial,
i.e any field localized far from z = 0 at time t = 0, interacts with the massless
graviton: when the field hits the boundary z = 0, a part of the scattered field is
given by the graviton. Furthermore, many of these dynamics are stable in the sense
that there is no growing mode and the conserved energy is positive.
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(iii) We know that in the context of the Gauge Theory/String Theory dualities, the radial
coordinate r = 1

z in Ad S5 is identified with the energy scale in the dual theory
gauge which is localized at the conformal boundary r = ∞ (see e.g. [5]). The
ADS/C FT conjecture deals with some one-to-one correspondence between the
theory in the bulk and the dynamics on the boundary (a form of the “Holographic
Principle”). The framework of our paper is obviously much more elementary:
there is neither string nor quantum field, just a scalar field defined on the Poincaré
patch, a solution of the linear hyperbolic equation (1.2). Then the issue of the Holo-
graphic Principle takes simply the following form: can we define a boundary value
φ2 of � on the conformal boundary z = 0, such that the operator � : � �→ φ2
is one to one, i.e. φ2 completely characterizes � ? This question would have a
trivial positive answer if the partial differential equation was elliptic, but since
(1.2) is hyperbolic, this question is very unusual and a positive answer is rather
unexpected. For instance, it fails in the case of the Friedrichs solutions since in
this case the dynamics preserves the Dirichlet condition (1.4) and so � = 0. An
interesting feature of our new dynamics is that we can perform a renormalization

on the boundary by putting �(�) := limz→0 z
3
2�, and this operator is one-to one.

In this sense, we have constructed dynamics that satisfy the Holographic Principle.

The main result of this paper is Theorem 4.1 which provides answers to these issues.
Now we describe the very simple idea of the construction of these new dynamics. We

can see that� is a solution of (1.2) iff �(t, x, Z) :=| Z |− 5
2 �(t, x, | Z |) is a solution of

(
∂2

t −�x −�Z

)
� = 0, in Rt × R

3
x ×

(
R

6
Z \ {Z = 0}

)
, (1.5)

and we have proved in [4] that � satisfies (1.3) iff � is a solution of the free wave
equation in the whole Minkowski space-time Rt × R

9
x,Z . As a consequence, to obtain

new dynamics for (1.2), it is sufficient to construct solutions of (1.5) that are not free
waves in Rt × R

9
x,Z . Therefore we look for some self-adjoint extensions of the Laplace

operator�x +�Z defined on C∞
0

(
R

3
x × (R6

Z \ {Z = 0})). Since this operator is essen-
tially self-adjoint in L2(R9), we must consider another Hilbert space and try to give
sense to a perturbation localized on R

3
x ×{Z = 0}. It turns out that there has been recent

progress on this question, in particular P. Kurasov in 2009 has studied the super-singular
perturbations of the Laplacian [11]. Taking advantage of these novel advances in spectral
analysis, we construct some new dynamics for (1.2) by considering the formal equation

(
∂2

t −�x −�Z + cδ0(Z)
)
� = 0, in Rt × R

3
x × R

6
Z . (1.6)

If � is the sum of a field �0 satisfying (1.3), and of a graviton-like singular field

z− 3
2 φ(t, x), then �(t, x, Z)=|Z |− 5

2 �0(t, x, |Z |) + φ(t, x) |Z |−4 and the meaning of
the super singular perturbation cδ0(Z) is

cδ0(Z)� := −4π3φ(t, x)δ0(Z).

A partial Fourier transform with respect to x allows to reduce the study of (1.6) to the
investigation of the super-singular perturbations of the Klein-Gordon equation

(
∂2

t −�Z + m2 + cδ0(Z)
)

u = 0, in Rt × R
6
Z ,

that we perform in the next section.
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Finally we summarize our main result stated in Theorem 4.1. We look for the gravi-
tational waves solutions of (1.2) that have an expansion of the following form:

�(t, x, z)=�r (t, x, z)z
5
2 +φ−1(t, x)χ(z)z

5
2 + φ0(t, x)χ(z)z

5
2 log z

+φ1(t, x)χ(z)z
1
2 + φ2(t, x)z− 3

2 , (1.7)

where χ ∈ C∞
0 (R), χ(z) = 1 in a neighborhood of 0 and �r (t, x, 0) = 0. The term

φ2(t, x)z− 3
2 is the part of the wave in the sector of the massless graviton. The behaviour

of the field on the boundary of the universe is assumed to be for some (α0, α1, α2) ∈ R
3:

φ−1(t, x) + α0φ0(t, x) + α1φ1(t, x) + α2φ2(t, x) = 0, t ∈ R, x ∈ R
3. (1.8)

For a large family of α j , we are able to construct a Hilbert functional framework for
which the Cauchy problem associated with (1.2) is well-posed. At each time, the bound-
ary constraint (1.8) is satisfied and the graviton part φ2 is non zero even if the initial
data are compactly supported far from the boundary of the universe: hence these waves
are not Friedrichs solutions. In fact we establish a kind of holographic principle: the
operator �α associating φ2 in (1.7), to any solution � of (1.2) and (1.8),

�α : � �−→ φ2(t, x) := lim
z→0

z
3
2�(t, x, z),

is one-to-one. Therefore the renormalized field on the conformal boundary completely
characterizes the whole field in the bulk. Graphically, φ2 is the hologram of �.

Moreover there exists a conserved energy. This complicated energy involves the
derivatives of third order of the fields. An interesting fact is that this energy is positive
for a continuous set of α j , more precisely when

α2 = 0, 0 < α1, −1

2
− 3

2
log 2 < α0 +

1

2
logα1 <

1

4
− 1

2
log 2 − γ,

where γ is the Euler’s constant. In this important case, the massless graviton

�G(t, x, z) := z− 3
2φ(t, x) satisfies the constraint (1.8). To see that, we note that �G

has the form (1.7) if one sets �r , φ−1, φ0, φ1 to zero, and φ2 = z
3
2�G . Then (1.8) is

trivially satisfied with α2 = 0. Moreover the energy of the massless graviton is just the
usual energy

E(�G) = c
∫

R3
x

|∇t,xφ(t, x)|2dx.

Furthermore, the positivity of the conserved energy assures that there is no growing
mode: we can consider that these new possible dynamics of the gravitational fluctua-
tions are stable.

As a final remark, we want to emphazise that this paper deals only with the exact Anti-
de Sitter metric that allows to perform explicit computations involving special functions,
useful to our spectral method. It would be very interesting to extend these results to the
more realistic case of the asymptotically Anti-de Sitter spaces studied by A. Vasy in
[19]. The situation should be much more complicated, and we can think that the delicate
techniques developed in [19] are necessary to the investigation of these universes.
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2. Super-singular Perturbation of The Wave Equation on R
1+6

Since the theory of the super-singular perturbation plays a crucial role in our work,
it is convenient to begin this section by a brief presentation of the elegant approach
exposed by P. Kurasov in [11]. Let A be a non negative selfadjoint operator on a
Hilbert space H = H0. We introduce the scale of the Hilbert spaces Hm,m ∈ Z. For

m ∈ N,Hm = Dom
(
(A + 1)

m
2

)
endowed with the norm ‖u‖Hm := ‖(A + 1)

m
2 u‖H ,

and for negative m,Hm is the completion of H for the norm ‖u‖Hm := ‖(A + 1)
m
2 u‖H .

A super-singular perturbation is an element ϕ ∈ (Hn)
′ 	 H−n for some n ≥ 3,

such that ϕ ∈ H−n \ H−n+1. The aim consists in providing a rigourous meaning to
the expression A(.) + αϕ(.)ϕ, α ∈ R, as some self-adjoint operator Aθ on a suit-
able Hilbert space. We define the minimal operator Amin as the restriction of A to
Dom (Amin) := {u ∈ Hn; ϕ(u) = 0}. Amin is essentially self-adjoint on H0, and is
symmetric on Hn−2 with deficiency indices (1, 1). We look for some self-adjoint exten-
sions of this minimal operator. The construction of Kurasov is the following. We choose
n − 1 arbitrary pairwise different real numbers μ j < 0, j = 0, ..., n − 2, and n − 2
arbitrary positive numbers γ j > 0, j = 1, ..., n − 2. We introduce the Hilbert space H0

spanned by Hn−2 and ϕ j := (
A − μ j

)−1
ϕ ∈ H−n+2, j = 1, ..., n − 2. Any u ∈ H0

is uniquely expressed by u = Ur +
∑n−2

j=1 u jϕ j with Ur ∈ Hn−2, u j ∈ C, and H0

is a Hilbert space for the norm ‖u‖2
H0

:= ‖Ur‖2
Hn−2

+
∑n−2

j=1 γ j | u j |2. The desired
extensions Aθ are constructed as follows. We put

�0 :=
⎡
⎣

n−2∏
j=0

(
A − μ j

)−1

⎤
⎦ϕ, b j :=

∏
i, i �= j

(μ j − μi )
−1, j = 1, ..., n − 2.

For any θ ∈ [0, π), the operator Aθ is defined by the domain

Dom (Aθ ) :=
⎧⎨
⎩u = Ur + u0�0 +

n−2∑
j=1

u jϕ j , Ur ∈ Hn, u j ∈ C, Bθ (u) = 0

⎫⎬
⎭ ,

associated with the “boundary condition”

Bθ (u) := ϕ(Ur ) sin θ + u0 cos θ − sin θ
n−2∑
j=1

b jγ j u j ,

and its action is given by

Aθu := A(Ur ) + μ0u0�0 +
n−2∑
j=1

(μ j u j + b j u0)ϕ j .

Then Aθ is a self-adjoint operator on H0. We shall use these techniques in the case
H = L2(R6), A = −�,ϕ = δ0, n = 4, in order to give a sense to −�u + L(u)δ0 for
the linear form L on H0 defined by L(u) = −u1 − u2. We now return to our problem.

We want to investigate the wave equation on the Minkowski space-time Rt × R
6
Z

with a supersingular perturbation localized at Z = 0. More precisely, given m ≥ 0, we
shall consider the abstract Klein-Gordon equation

∂2
t u + Au + m2u = 0, (2.1)
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where A is a densely defined selfadjoint operator on a Hilbert space H0 of distributions
on R

6, such that

C∞
0

(
R

6 \ {0}
)

⊂ Dom(A), ∀ϕ ∈ C∞
0

(
R

6 \ {0}
)
, Aϕ = −�ϕ.

In fact, we choose a very simple point-like interaction at the origin, so for all u ∈
Dom(A), Au has the form

Au = −�u + L(u)δ0, (2.2)

where L is a continuous linear form on the space H0 defined below by (2.3), equal to
zero on C∞

0

(
R

6 \ {0}). This constraint yields a character very singular to the perturba-
tion and the Cauchy problem cannot be solved as usual in a scale of Sobolev spaces: if
u ∈ ∩2

k=0Ck
(
Rt ; Hs−k(R6)

)
is solution of (2.1) and (2.2) with L(u) �= 0, then s < −1

since δ0 ∈ Hσ (R6) iff σ < −3. Hence a contradiction appears since C∞
0 (R

6 \ {0})
is dense in Hs(R6), s ≤ 3, and as a consequence L(u) = 0. Therefore we have to
introduce some functional spaces, in which C∞

0 (R
6 \ {0}) is not dense. We want also to

recover the static solutions ustat (t, Z) = |Z|−4 for m = 0, and ustat (t, Z) = m2 K2(m|Z |)
2|Z |2

when m > 0, where K2 is the classical modified Bessel function (see below), that are
solutions of (2.1) and (2.2) with L(ustat ) = −4π3. On the other hand we know (see
Lemma 2.2) that

m2 K2(m |Z|)
2 |Z|2 = 1

|Z|4 − m2

4 |Z|2 − m4

16
log |Z| + O(1), Z → 0.

All these properties suggest to consider Hilbert spaces of distributions, spanned by
|Z |−4, |Z |−2, log |Z | and some usual Sobolev spaces. In fact it is just the spaces of
the abstract setting of [11]. More precisely we take χ ∈ C∞

0 (R
6
Z ) satisfying for some

ρ > 0, χ(Z) = 1 when |Z| ≤ ρ. We introduce the spaces

Hk :=
{

u = vr + v1
χ(Z)

|Z|2 + v2
χ(Z)

|Z|4 , vr ∈ Hk+2(R6
Z ), v j ∈ C

}
, k = −1, 0, (2.3)

Hk :=
{

u = Vr +v0χ(Z) log(|Z|)+v1
χ(Z)

|Z|2 + v2
χ(Z)

|Z|4 , Vr ∈ Hk+2(R6
Z ), v j ∈ C

}
,

k = 1, 2, (2.4)

where Hm(R6) are the usual Sobolev spaces of functions v ∈ L2 such that (−�+1)
m
2 v ∈

L2. The link with the space H0 introduced in [11], as previously described, will be
explained by Lemma 2.2. It is clear that these spaces do not depend on the choice of
function χ , and given u, the coordinates v j , 0 ≤ j ≤ 2, and Vr (0) when k = 2, are also
independent of χ . We easily check that in the sense of the distributions on R

6
Z we have

�Z log(|Z|) = 4

|Z|2 , �Z

(
1

|Z|2
)

= − 4

|Z|4 , �Z

(
1

|Z|4
)

= −4π3δ0(Z).

(2.5)

Since for any ε > 0, δ0 ∈ H−3−ε(R6) \ H−3(R6), we have

χ(Z)

|Z|4 ∈ H−1−ε(R6) \ H−1(R6),
χ(Z)

|Z|2 ∈ H1−ε(R6) \ H1(R6),

χ(Z) log(|Z|) ∈ H3−ε(R6) \ H3(R6).
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We deduce that H2 ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ L1
loc(R

6). Now we take two real μ1, μ2,
such that

μ j < 0, μ1 �= μ2, (2.6)

and we choose on H2(R6) the norm given by:

‖vr‖H2 := ‖(−�− μ1)
1
2 (−�− μ2)

1
2 vr‖L2 .

The other spaces Hm are endowed with the norm ‖vr ‖Hm :=‖(−� + 1)
m
2 vr ‖L2 . If we

put

‖u‖Hk :=
⎛
⎝‖vr‖2

Hk+2 +
2∑

j=1

|v j|2
⎞
⎠

1
2

, k = −1, 0, (2.7)

‖u‖Hk :=
⎛
⎝‖Vr‖2

Hk+2 +
2∑

j=0

|v j|2
⎞
⎠

1
2

, k = 1, 2, (2.8)

we can see that ‖.‖H j is a norm on H j and (H j , ‖ . ‖H j ) is a Hilbert space, and Hi

is dense in H j for j ≤ i . Since H3+ε(R6) ⊂ C0(R6), Vr (0) is well defined for any
u ∈ H2. Then given a linear form q on C

4, we introduce the closed subspace of H2,

D(q) := {u ∈ H2; q(Vr (0), v0, v1, v2) = 0} .
C∞

0 (R
6 \ {0}) is a subspace of D(q). We denote D′ (Rt ; D(qλ)) the space of the D(qλ)-

valued vector distributions on Rt . Finally we have to choose the linear form L on Hk .
Since we want that Au given by (2.2) belongs to L1

loc(R
6), we note that (2.5) imposes

to take:

L(u) = −4π3v2. (2.9)

We emphasize that u �→ L(u)δ0 is a local perturbation since when u = 0 in a neigh-
borhood of 0, then v2 = 0, and so L(u)δ0 = 0. The Cauchy problem is solved by the
following theorem.

Theorem 2.1. For allμ1, μ2 satisfying (2.6), there exists a continuous family (qλ)λ∈R3 of
linear forms on C

4 such that D(qλ) is dense in H1, and for any m ≥ 0, f ∈ H1, g ∈ H0,
there exists a unique uλ satisfying

uλ ∈ C2 (Rt ; H−1) ∩ C1 (Rt ; H0) ∩ C0 (Rt ; H1) ∩ D′ (Rt ; D(qλ)) , (2.10)

∂2
t uλ −�Z uλ + m2uλ + L(uλ)δ0 = 0, (2.11)

uλ(0, Z) = f (Z), ∂t uλ(0, Z) = g(Z). (2.12)

The solution depends continuously on the initial data: there exists C, K > 0, depend-
ing on λ but independent of m, such that

‖uλ(t)‖H1 + m ‖uλ(t)‖H0 + ‖∂t uλ(t)‖H0

≤ C
(‖ f ‖H1 + m ‖ f ‖H0 + ‖g ‖H0

)
e
(
K−m2

)
+|t |, (2.13)
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where x+ = x when x > 0 and x+ = 0 when x ≤ 0, and for all � ∈ C∞
0 (Rt ) we have:

‖
∫
�(t)uλ(t)dt‖H2

≤ C
(‖ f ‖H1 + m‖ f ‖H0 + ‖g‖H0

) ∫ (|�(t)| + |�′′(t)|) e(K−m2)+|t | dt. (2.14)

There exists a conserved energy, i.e. a non-trivial, continuous quadratic form Eλ
defined on H1 ⊕ H0, that satisfies:

∀t ∈ R, Eλ (uλ(t), ∂t uλ(t)) = Eλ( f, g). (2.15)

This energy is not positive definite but Eλ is given on C∞
0 (R

6 \ {0})⊕ C∞
0 (R

6 \ {0}) by:

Eλ( f, g) = ‖∇ f ‖2
H2 + m2 ‖ f ‖2

H2 + ‖g‖2
H2 . (2.16)

When f ∈ D(qλ), g ∈ H1, then uλ is a strong solution in the sense that:

uλ ∈ C2 (Rt ; H0) ∩ C1 (Rt ; H1) ∩ C0 (Rt ; D(qλ)) , (2.17)

and there exists C, K > 0, depending on λ but independent of m, such that

‖uλ(t)‖H2 + m ‖uλ(t)‖H1 +‖∂t uλ(t)‖H1

≤ C
(‖ f ‖H2 + m ‖ f ‖H1 +‖g‖H1

)
e
(
K−m2

)
+|t |. (2.18)

We prove in the next theorem that these linear forms qλ are pairwise different. This
large family is described below by (2.55) and Theorem 2.5. The terrific expression of
the high order energy is given by (2.45) and (2.46). The strategy of the proof consists in
introducing a suitable hermitian product <,>0 on H0 such that A endowed with D(q)
as domain, is a densely defined self-adjoint operator. Then the energy is simply

Eλ( f, g) = ‖g‖2
0 + 〈A f, f 〉0 + m2‖ f |20.

Proof of Theorem 2.1. It will be convenient to use an alternative definition of the spaces
Hk . We take a third real number μ0 and we assume that

μ0 < 0, μ0 �= μ1, μ0 �= μ2. (2.19)

We introduce the distributions

�0 := (−�− μ0)
−1(−�− μ1)

−1(−�− μ2)
−1δ0 ∈ H3−ε(R6) \ H3(R6),

ϕ j := (−�− μ j )
−1δ0 ∈ H−1−ε(R6) \ H−1(R6).

By the elliptic regularity, all these functions belong to C∞ (
R

6 \ {0}), and an explicit
calculation give the structure near Z = 0. Hence we can recover the Hilbert spaces
introduced in [11]:
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Lemma 2.2. �0 and ϕ j belong to L1(R6) and can be written as

ϕ j (Z) = χ(Z)

4π3

(
1

|Z|4 +
μ j

4 |Z|2 − μ2
j

16
log(|Z|)

)
+ Fj (Z), (2.20)

�0(Z) = 1

32π3χ(Z) log(|Z|) + G0(Z), (2.21)

where Fj and G0 are functions of H4(R6), satisfying

Fj (0) = μ2
j

256π3 (4 log 2 + 3 − 4γ − 2 log |μ j|), (2.22)

G0(0) = −4 log 2 + 3 − 4γ

128π3

−μ
2
1(μ2 − μ0) log |μ1|+μ2

2(μ0 − μ1) log |μ2|+μ2
0(μ1−μ2) log |μ0|

64π3(μ0 − μ1)(μ1−μ2)(μ2−μ0)
,

(2.23)

where γ is the Euler’s constant.
As a consequence, we have the following characterization of spaces Hk:

Hk =
{

u =ur +u1ϕ1(Z)+u2ϕ2(Z), ur ∈ Hk+2(R6
Z ), u j ∈ C

}
, k =−1, 0, (2.24)

Hk =
{

u =Ur +u0�0(Z) + u1ϕ1(Z) + u2ϕ2(Z), Ur ∈ Hk+2(R6
Z ), u j ∈C

}
, k =1, 2,

(2.25)

where the coordinates u0, u1, u2 do not depend on the choice of μ0, and the norms

|u|k :=
⎛
⎝‖ur‖2

Hk+2 +
2∑

j=1

|u j|2
⎞
⎠

1
2

, k =−1, 0, (2.26)

|u|k :=
⎛
⎝‖Ur‖2

Hk+2 +
2∑

j=0

|u j|2
⎞
⎠

1
2

, k =1, 2, (2.27)

are equivalent to the ‖.‖Hk -norms (2.7), (2.8).

The proof of lemma is based on explicit calculations of integrals involving special
functions, that are detailled in the Appendix.

Now we take two real numbers γ j > 0 and for u ∈ H0 we put

‖u‖0:=
⎛
⎝‖ur‖2

H2 +
2∑

j=1

γ j |u j|2
⎞
⎠

1
2

, (2.28)

that is clearly equivalent to the ‖.‖H0 -norm. We choose θ ∈ [0, π [ and we put

λ := (λ0, λ1, λ2) = (cot θ, log γ1, log γ2) ∈ ] − ∞,∞] × R × R.
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We introduce the operator A defined by:

Au := −�Ur + μ0u0�0 +

(
μ1u1 +

u0

μ1 − μ2

)
ϕ1 +

(
μ2u2 +

u0

μ2 − μ1

)
ϕ2.

This operator is a continuous linear map from Hk to Hk−2 for k = 1, 2. Now we define
Aλ as its restriction to the domain Dom(Aλ) defined by

Dom(Aλ) :=
{

u ∈ H2 ; Ur (0) sin θ + u0 cos θ − (γ1u1 − γ2u2)
sin θ

μ1 − μ2
= 0

}
.

(2.29)

We consider the Cauchy problem associated to (2.12) and

∂2
t uλ + Aλuλ + m2uλ = 0. (2.30)

We show that this equation is just (2.11). We have (−�−μ0)�0 = (−�−μ1)
−1ϕ2 =

ϕ1−ϕ2
μ1−μ2

. Hence we get

Au = −�u − (u1 + u2)δ0. (2.31)

Since (5.6) implies

u1 + u2 = 4π3v2 = −L(u), (2.32)

Eqs. (2.30) and (2.11) are equivalent to

∂2
t u −�u + m2u + L(u)δ0 = 0. (2.33)

The Cauchy problem for this equation has to be completed by the “boundary condition
at Z = 0” specified by the domain of Aλ:

Ur (0) sin θ + u0 cos θ − (γ1u1 − γ2u2)
sin θ

μ1 − μ2
= 0. (2.34)

Thanks to (5.6), this constraint can be associated with a linear form qλ (Vr (0), v0, v1, v2)

defined on C
4 and D(qλ) = Dom(Aλ). Therefore to prove the theorem, it is sufficient

to investigate the Cauchy problem (2.12), (2.30).
The case θ = 0 that corresponds to u0 = 0 or 16v0 + 4(μ1 +μ2)v1 −μ1μ2v2 = 0, is

rather peculiar since Dom(Aλ) is not dense in H1. It corresponds simply to the operator
defined on H4(R6)⊕ Cϕ1 ⊕ Cϕ2 by

∀Ur ∈ H4(R6), A0Ur := −�Ur , A0ϕ j = μ jϕ j , j = 1, 2. (2.35)

In this case the dynamics is uncoupled between the regular and singular parts of the field:
given f = Fr + f1ϕ1 + f2ϕ2, g = Gr + g1ϕ1 + g2ϕ2, Fr ,Gr ∈ H4(R6), f j , g j ∈ C, the
Cauchy problem is easily solved by

uλ(t, Z) = Ur (t, Z) + f1(t)ϕ1(Z) + f2(t)ϕ2(Z),

where Ur is the solution of the free Klein-Gordon equation ∂2
t Ur −�Ur + m2Ur = 0

with Ur (0) = Fr , ∂tUr (0) = Gr , and f j (t) is a solution of the harmonic oscillator
f̈ j + (m2 + μ j ) f j = 0, with f j (0) = f j , ḟ j (0) = g j .
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In the sequel, we consider the case θ �= 0, i.e. λ ∈ R
3 and the family of linear forms

is given by

qλ(Vr (0), v0, v1, v2) := Ur (0) + λ0u0 − eλ1

μ1 − μ2
u1 − eλ2

μ2 − μ1
u2. (2.36)

The crucial point is the selfadjointness of the operator Aλ and some energy estimates.

Lemma 2.3. (Aλ, Dom(Aλ)) is a densely defined selfadjoint operator on (H0, ‖ . ‖0)

and Dom(Aλ) is dense in H1. Moreover Aλ is bounded from below and there exists
Mλ, α > 0, c(λ) > 0 such that for all u ∈ Dom(Aλ) we have

〈Aλu, u〉0 + Mλ ‖u‖2
0 ≥ α ‖u‖2

H1
, (2.37)

‖u‖H2 ≤ c(λ)‖(Aλ + Mλ) u‖H0 ≤ 1

c(λ)
‖u‖H2 . (2.38)

Proof of Lemma 2.3. Thanks to Lemma 2.2 our Hilbert spaces Hk coincide with the
the spaces introduced by Kurasov and it was proved in [11] that (Aλ, Dom(Aλ)) is a
selfadjoint operator on (H0, ‖ . ‖0). First we prove that Dom(Aλ) is dense in H1. Given
u = Ur +u0�0 +u1ϕ1 +u2ϕ2 ∈ H1, we pick a sequenceψn ∈ C∞

0 (R
6 \{0}) converging

to Ur in H3(R6), and a sequence χn ∈ C∞
0 (R

6 \ {0}) converging to χ in H3(R6). We

put U n
r := ψn +

(
γ1μ1−γ2μ2
μ1−μ2

− u0 cot θ
)
(χ−χn). Then un := U n

r +u0�0 +u1ϕ1 +u2ϕ2

belongs to Dom(Aλ) and tends to u in H1 as n tends to infinity.
Now we investigate the quadratic form associated with the operator Aλ. We use the

fact that 〈(−�− μ0)Ur ,�0〉H2 = Ur (0) = γ1u1−γ2u2
μ1−μ2

− u0 cot θ to evaluate:

〈Aλu, u〉0 =μ0 ‖�0‖2
H2 |u0|2 +μ1γ1 |u1|2 +μ2γ2 |u2|2 +

γ1

μ1−μ2
u0u1− γ2

μ1−μ2
u0u2

+ ‖∇Ur‖2
H2 + 〈(−�−μ0)Ur , u0�0〉H2 +2μ0� 〈Ur , u0�0〉H2

= (−μ0 ‖�0‖2
H2 − cot θ) |u0|2 +μ1γ1 |u1|2 +μ2γ2 |u2|2

+ 2�
(

u0
γ1u1−γ2u2

μ1−μ2

)
+ ‖∇Ur‖2

H2 − 2μ0 ‖Ur‖2
H2 + 2μ0 ‖Ur +u0�0‖2

H2 .

(2.39)

We see that u �→ 〈Aλu, u〉0 is a continuous sesquilinear form on Dom(Aλ) endowed
with the H1-norm. Moreover for any M ≥ 0 we have

〈Aλu, u〉0 + M ‖u‖2
0

≥ (−μ0 ‖�0‖2
H2 − cot θ − 1 + M) |u0|2

+γ1

(
μ1 − γ1

(μ1 − μ2)2
+ M

)
|u1|2 +γ2

(
μ2 − γ2

(μ1 − μ2)2
+ M

)
|u2|2

+ ‖∇Ur‖2
H2 −2μ0 ‖Ur‖2

H2 +(2μ0 + M) ‖Ur + u0�0‖2
H2 . (2.40)

We deduce that for M = Mλ large enough, there exists α > 0 such that for all
u ∈ Dom(Aλ), Equation (2.37) holds. We conclude that Aλ is bounded from below,

‖(Aλ + Mλ)
1
2 u‖0 is a norm equivalent to the H1 norm, the domain of the sesquilinear
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form is just H1, and (Aλ + Mλ)
− 1

2 is a continuous linear map from H0 to H1. Equation
(2.37) implies also that

α ‖u‖H1 ≤ ‖(Aλ + Mλ) u‖H0 ,

hence

2∑
j=0

|u j| ≤ κ‖(Aλ + Mλ) u‖H0 .

We have also

‖Ur‖H4 ≤ C‖(−� + Mλ)Ur‖H2 ≤ C
(‖(Aλ + Mλ) u‖H0 + |u0μ0| ‖�0‖H2

)
.

Therefore we conclude that there exists c(λ) > 0 such that for all u ∈ Dom(Aλ) we
have (2.38). ��

Then it is well-known that for f ∈ Dom(Aλ), g ∈ H1, the Cauchy problem (2.12),
(2.30) has a unique solution uλ ∈ C2(Rt ; H0) ∩ C1(Rt ; H1) ∩ C0(Rt ; Dom(Aλ)) and
this solution depends continuously on the initial data (see e.g. Theorem 7.8, p. 114 in [9]).
Nevertheless, since we need to carefully control the constants with respect to the mass

m, we present some details. If m2 ≥ Mλ, we have simply uλ(t) = cos
(

t
√

Aλ + m2
)

f +

sin
(

t
√

Aλ+m2
)

√
Aλ+m2

g, hence (2.37) and (2.38) imply:

‖∂t uλ(t)‖Hk + ‖uλ(t)‖Hk+1 ≤ C
(‖ f ‖Hk+1 + ‖g‖Hk

)
, k = 0, 1. (2.41)

When m2 < Mλ, we can construct uλ by solving the following integral equation thanks
to Picard’s iterates:

uλ(t) = cos
(

t
√

Aλ + Mλ

)
f +

sin
(
t
√

Aλ + Mλ

)
√

Aλ + Mλ

g

+(Mλ − m2)

∫ t

0

sin
(
(t − s)

√
Aλ + Mλ

)
√

Aλ + Mλ

uλ(s)ds.

The Gronwall lemma gives

‖uλ(t)‖H1 + ‖∂t uλ(t)‖H0 ≤ C(λ)
(‖ f ‖H1 + ‖g‖H0

)
e|t |(Mλ−m2), (2.42)

and by applying Aλ + Mλ to the integral equation, using (2.38) and the Gronwall lemma
again, we get

‖uλ(t)‖H2 + ‖∂t uλ(t)‖H1 ≤ C(λ)
(‖ f ‖H1 + ‖g‖H0

)
e|t |(Mλ−m2). (2.43)

Now we have to control m‖uλ(t)‖Hk , k = 0, 1. We start by noting that the following
energy is conserved:

‖∂t uλ(t)‖2
0 + 〈Aλuλ(t), uλ(t)〉0 + m2 ‖uλ(t)‖2

0

=‖g‖2
0 + 〈Aλ f, f 〉0 + m2 ‖ f ‖2

0 := Eλ( f, g), (2.44)
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hence (2.37) and (2.42) imply (2.13) with K := Mλ + 1 when m2 ≥ K . Furthermore,
we get its expression with (2.39): given f = Fr + f0�0 + f1ϕ1 + f2ϕ2 ∈ H1, g =
gr + g1ϕ1 + g2ϕ2 ∈ H0, Fr ∈ H3(R6), gr ∈ H2(R6), f j , g j ∈ C, we have:

Eλ( f, g) =
2∑

j=1

eλ j
[
(μ j + m2) | f j |2 + |g j |2

]
+
(
−μ0 ‖�0 ‖2

H2 −λ0

)
| f0 |2

+ 2�
(

f0
eλ1 f1 − eλ2 f2

μ1 − μ2

)
+ ‖(−�− μ1)

1
2 (−�− μ2)

1
2 gr‖2

L2

+ (m2 + 2μ0) ‖(−�− μ1)
1
2 (−�− μ2)

1
2 (Fr + f0�0)‖2

L2

+ ‖∇(−�−μ1)
1
2 (−�−μ2)

1
2 Fr‖2

L2 − 2μ0 ‖(−�−μ1)
1
2 (−�− μ2)

1
2 Fr‖2

L2

=
2∑

j=1

eλ j
[
(μ j + m2) | f j|2 + |g j |2

]
+
(
(m2 + μ0) ‖�0 ‖2

H2 −λ0

)
| f0 |2

+ 2�
(

f0
eλ1 f1−eλ2 f2

μ1 − μ2

)
+ ‖(−�− μ1)

1
2 (−�− μ2)

1
2 gr‖2

L2

+ 2(m2 + 2μ0)�
(

f0(−�− μ0)
−1 Fr (0)

)

+ ‖∇(−�− μ1)
1
2 (−�−μ2)

1
2 Fr‖2

L2 + m2 ‖(−�−μ1)
1
2 (−�−μ2)

1
2 Fr‖2

L2 ,

(2.45)

where we can compute

‖�0‖2
H2 = 1

8

∫ ∞

0

ρ5

(ρ2 − μ1)(ρ2 − μ2)(ρ2 − μ0)2
dρ

= 1

16

(
μ2

1 log(−μ1)

(μ2 − μ1)(μ1 − μ0)2
+

μ2
2 log(−μ2)

(μ1 − μ2)(μ2 − μ0)2

+
(μ1μ

2
0 + μ2μ

2
0 − 2μ0μ1μ2) log(−μ0)

(μ1 − μ0)2(μ2 − μ0)2
− μ0

(μ1 − μ0)(μ2 − μ0)

)
.

(2.46)

When f0 = f1 = f2 = g1 = g2 = 0, in particular when f, g ∈ C∞
0 (R

6 \ {0}),
then Eλ( f, g) is given by (2.16). To prove (2.18) when m2 ≥ Mλ + 1, we consider for
h �= 0, vh(t) := h−1[uλ(t +h)−uλ(t)] that tends to ∂t uλ(t) in C0(Rt ; H1)∩C1(Rt ; H0)

as h → 0. We apply estimate (2.44) to vh and we get

‖∂tvh(t)‖2
0 +
∥∥∥(Aλ + Mλ)

1
2 vh

∥∥∥
2

0
+ (m2 − Mλ)‖vh(t)‖2

0

=
∥∥∥∥
∂t uλ(h)−g

h

∥∥∥∥
2

0
+

∥∥∥∥(Aλ+Mλ)
1
2

(
uλ(h)− f

h

)∥∥∥∥
2

0
+(m2−M)

∥∥∥∥
uλ(h)− f

h

∥∥∥∥
2

0
,

and taking the limit as h tends to zero we obtain
∥∥∥(Aλ+Mλ) uλ(t)+(m

2−Mλ)uλ(t)
∥∥∥

2

0
+
∥∥∥(Aλ+Mλ)

1
2 ∂t uλ(t)

∥∥∥
2

0
+(m2−Mλ)‖∂t uλ(t)(t)‖2

0

=
∥∥∥Aλ f + m2 f

∥∥∥
2

0
+
∥∥∥(Aλ + Mλ)

1
2 g
∥∥∥

2

0
+ (m2 − M) ‖g‖2

0 .
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We deduce from this equality and with (2.13) and (2.38), that (2.18) is satisfied with
K = Mλ + 1 when m2 ≥ Mλ + 1. It remains to study the case 0 ≤ m2 ≤ Mλ + 1. We
simply use (2.42) and (2.43) to write

sup
m2≤Mλ+1

m‖uλ(t)‖Hk ≤ K

(
‖ f ‖Hk +

∣∣∣∣
∫ t

0
‖∂t uλ(s)‖Hk ds

∣∣∣∣
)

≤ C ′(λ)
(‖ f ‖Hk+1 + ‖g‖Hk

)
e|t |(K−m2).

Now (2.13) and (2.18) are straight consequences of this estimate and (2.42) and (2.43).
To solve the Cauchy problem when ( f, g) ∈ H1 ⊕H0, we pick a sequence ( f n, gn) ∈

Dom(Aλ)⊕ H1 that tends to ( f, g) in H1 ⊕ H0 as n → ∞. Estimation (2.13) assures
that the solution un ∈ C2(Rt ; H0) ∩ C1(Rt ; H1) ∩ C0(Rt ; Dom(Aλ)) of the Cauchy
problem with initial data ( f n, gn) tends to a function u ∈ C1(Rt ; H0) ∩ C0(Rt ; H1)

that is a solution of (2.12), (2.30) and satisfies (2.44). Since A is continuous from
H1 to H−1, the equation gives u ∈ C2(Rt ; H−1). To prove that u is a distribution of
D′ (Rt ; Dom(Aλ)), we take � ∈ C∞

0 (Rt ) and we consider F := ∫
u(t)�(t)dt ∈ H1

and Fn := ∫
un(t)�(t)dt ∈ Dom(Aλ). By the previous argument Fn tends to F

in H1 as n → ∞. Moreover AλFn = − ∫ un(t)(�′′(t) + m2�(t))dt that converges
to − ∫ u(t)(�′′(t) + m2�(t))dt in H1. We conclude with (2.38) and (2.13) that F ∈
Dom(Aλ), i.e. u is a Dom(Aλ)-valued distribution on Rt and (2.14) is established.

To prove the uniqueness, we consider a solution u satisfying (2.10), (2.30) and (2.12)
with f = g = 0. We take a test function � ∈ C∞

0 (Rt ), 0 ≤ �,
∫
�(t)dt = 1, and we

define

un(t) := n
∫
�(ns)u(t + s)ds. (2.47)

un tends to u in C1(Rt ; H0) ∩ C0(Rt ; H1) as n → ∞, hence we have ‖un(0)‖H1→ 0,
‖∂t un(0)‖H0→ 0. Moreover un is a strong solution satisfying (2.17) and (2.13). There-
fore un tend to 0 in C1(Rt ; H0) ∩ C0(Rt ; H1), and finally u = 0. ��

We now describe some important properties of these new dynamics.

Theorem 2.4. The propagation is causal, i.e.

supp(uλ(t, .)) ⊂ {Z; |Z | ≤ | t |} + [supp( f ) ∪ supp(g)] . (2.48)

The dynamics is non-trivial: for all f ∈ H1, g ∈ H0, if f and g are spherically sym-
metric, then L(uλ(t)) �= 0 for some time t, except if f = g = 0.

If λ �= λ′ the dynamics are different: given two spherically symmetric functions f, g
in C∞

0 (R
6 \ {0}), ( f, g) �= (0, 0), the solutions uλ and uλ′ of (2.10), (2.11), (2.12) are

different.
For all m ≥ 0,m �= √−μ1,m �= √−μ2, there exists a smooth surface �(m) ⊂ R

3

such that for any λ ∈ �(m), the static solutions u(t, Z) = | Z |−4 for m = 0, and
u(t, Z) = | Z |−2 K2(m | Z |) when m > 0, belong to D(qλ). For all m ≥ 0 and all

λ ∈ �(0), u±(t, Z) := e±imt

|Z |4 is a time periodic strong solution of (2.11), (2.17).

We remark that the map

( f, g) ∈ H1 × H0 �−→ v2 = − 1

4π3 L (uλ) ∈ C2 (Rt ) (2.49)
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is linear and continuous. Its kernel contains the odd Cauchy data. The interesting point is
that, if RHk denotes the spherically symmetric elements of Hk , this map is one-to-one on
RH1 × RH0. Then the leading term v2(t) |Z|−4 characterizes the spherically symmetric
solutions uλ. We shall see in the last section, that this property yields a holographic
principle for the new dynamics in Ad S5.

Proof of Theorem 2.4. To prove that the propagation is causal, we write uλ = W +w,
where W is a solution of the free Klein-Gordon equation (∂2

t −� + m2)W =0 with W (0)
=uλ(0), ∂t W (0)=∂t uλ(0). Then (∂2

t −�+m2)w=−L(uλ)δ0 with w(0)=∂tw(0)=0.
We have supp(W (t, .)) ⊂ {Z; |Z| ≤ |t|} + [supp( f ) ∪ supp(g)] , supp(w(t, .)) ⊂ {Z;
|Z | ≤ |t |}. When 0 ∈ supp( f ) ∪ supp(g), supp(w(t, .)) ⊂ supp(W (t, .)) and (2.48)
is established. When 0 /∈ supp( f ) ∪ supp(g), we consider firstly the case ( f, g) ∈
Dom(Aλ)⊕H1. Then necessarily u0(0)= u̇0(0)=u1(0)= u̇1(0)=u2(0)= u̇2 =0, hence
( f, g) ∈ H4(R6) × H3(R6). We denote τ > 0 the distance between 0 and supp( f ) ∪
supp(g). For |t|≤ τ,W (t) satisfies trivially the boundary constraint qλ(W (t))=0, hence
W (t)= uλ(t). As a consequence L(u(t))= 0 for |t | ≤ τ , and for all t, supp(w(t)) ⊂
{Z; |Z| ≤ |t| −τ }. Since 0 ∈ {Z; |Z| ≤ |τ|} + [supp( f ) ∪ supp(g)], we conclude that
(2.48) is satisfied again. When ( f, g) ∈ H3(R6)⊕ H2(R6) and 0 /∈ supp( f )∪supp(g),
we choose a sequence ( f n, gn) ∈ H4(R6)× H3(R6) that tends to ( f, g) in H3(R6)⊕
H2(R6), and supp( f n) ∪ supp(gn) ⊂ {Z; |Z| ≤ 1

n } + [supp( f ) ∪ supp(g)]. The pre-
vious result assures that supp(un

λ(t, .)) ⊂ {Z; |Z | ≤ |t | + 1
n } + [supp( f ) ∪ supp(g)],

where un
λ is the strong solution with initial data ( f n, gn). Now (2.48) follows from the

convergence of un
λ to uλ in C0(Rt ; H1) as n → ∞.

To show that the dynamics is not trivial and involves a singular part in |Z |−4 even
for smooth initial data, we first consider a strong solution u = Ur + u0�0 + u1ϕ1 + u2ϕ2
with Cauchy data f ∈ H2, g ∈ H1. Since u ∈ C2(Rt ; H0), we have ur := Ur + u0�0 ∈
C2(Rt ; H2(R6)), u1 u2 ∈ C2(R). From u ∈ C1(Rt ; H1) we deduce that u0 ∈ C1(R)

and Ur ∈ C1(Rt ; H3(R6)). Finally u ∈ C0(Rt ; D(qλ)) implies Ur ∈ C0(Rt ; H4(R6)).
Furthermore (2.11) implies that

∂2
t ur + ü1ϕ1 + ü2ϕ2 −�Ur + μ0u0�0 + m2ur

+

(
μ1u1 + m2u1 +

u0

μ1 − μ2

)
ϕ1 +

(
μ2u2 + m2u2 +

u0

μ2 − μ1

)
ϕ2 = 0,

where ü j denotes the second derivative in time. By examining the regularity of each
term, we obtain:

∂2
t ur −�Ur + μ0u0�0 + m2ur = 0,

ü1 + (μ1 + m2)u1 +
u0

μ1 − μ2
= 0,

ü2 + (μ2 + m2)u2 +
u0

μ2 − μ1
= 0,

(2.50)

and the boundary condition at Z = 0:

Ur (t, 0) + λ0u0(t)− eλ1

μ1 − μ2
u1(t)− eλ2

μ2 − μ1
u2(t) = 0. (2.51)

If we assume that L(u(t)) = 0 for any time t , then u1 + u2 = 0 and with the two
last equations of (2.50) we successively get μ1u1 + μ2u2 = 0, u1 = u2 = 0, and
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finally u0 = 0. We conclude that u = Ur is a solution of the free Klein-Gordon equa-
tion ∂2

t u − �u + m2u = 0 with f ∈ H4(R6), g ∈ H3(R6), and (2.51) assures that
u(t, 0) = 0. Moreover when the Cauchy data are spherically symmetric, the Fourier
transform of u is given by the classical formula

F(u)(t, ζ ) =
∑
±

e±i t
√

|ζ |2+m2
A±(|ζ|), (1 + r2)2 A±(r) ∈ L2(R+

r , r
5dr).

Then u(t, 0) = 0 implies that for any t ∈ R,
∫ ∞

−∞
eitr
(

A+(
√

r2−m2)1[m,∞[(r)+ A−(
√

r2 − m2)1]−∞,−m](r)
)
(r2 − m2)2rdr =0.

We conclude that A± = 0 and finally f = g = 0. In the general case where f ∈ H1
and g ∈ H0, we use the regularized solution (2.47). L(u) = 0 implies L(un) = 0 and
we have un = 0 by the previous result. Since un strongly tends to u as n → ∞, we
conclude that u = 0.

Now we show that different λ yield different dynamics. We assume that u = Ur +
u0�0 + u1ϕ1 + u2ϕ2 is a solution of (2.11), (2.12), (2.17) for some λ and λ′ in R

3 with
spherically symmetric initial data f, g ∈ C∞

0 (R
6 \ {0}), ( f, g) �= (0, 0). u satisfies

system (2.50) that has to be completed by the initial data

Ur (0)= f, u0(0)=u1(0)=u2(0) = 0, ∂tUr (0) = g, u̇0(0) = u̇1(0) = u̇2(0) = 0,

and the two boundary conditions at Z = 0:

Ur (t, 0) + λ0u0(t)− eλ1

μ1 − μ2
u1(t)− eλ2

μ2 − μ1
u2(t)

= Ur (t, 0) + λ′
0u0(t)− eλ

′
1

μ1 − μ2
u1(t)− eλ

′
2

μ2 − μ1
u2(t) = 0.

We get from both these constraints that

(λ0 − λ′
0)u0(t) = eλ1 − eλ

′
1

μ1 − μ2
u1(t) +

eλ2−eλ
′
2

μ2 − μ1
u2(t). (2.52)

First we assume that λ0 �= λ′
0. Then u0 = λ0−λ′

0
μ1−μ2

(
[eλ1 − eλ

′
1 ]u1 − [eλ2 − eλ

′
2 ]u2

)
,

hence

ü1 + (μ1 + m2)u1 +
λ0 − λ′

0

(μ1 − μ2)2

(
[eλ1 − eλ

′
1 ]u1 − [eλ2 − eλ

′
2 ]u2

)
= 0,

ü2 + (μ2 + m2)u2 − λ0 − λ′
0

(μ1 − μ2)2

(
[eλ1 − eλ

′
1 ]u1 − [eλ2 − eλ

′
2 ]u2

)
= 0.

(2.53)

Since the initial data for u j are zero, we deduce that u1(t) = u2(t) = 0 for all t , that is a
contradiction with the fact that u1 +u2 is not identically zero. We conclude that λ0 = λ′

0.
As a consequence of (2.52), we get

(
eλ1 − eλ

′
1

)
u1(t) =

(
eλ2 − eλ

′
2

)
u2(t).
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We assume that λ1 �= λ′
1, hence we can express u1 in terms of u2. Since (2.50) shows

that ü1 + ü2 + (μ1 + m2)u1 + (μ2 + m2)u2 = 0, we deduce that u2 is solution of

(
eλ2 − eλ

′
2

eλ1 − eλ
′
1

+1

)
ü2+

(
(μ1 + m2)

eλ2 −eλ
′
2

eλ1 −eλ
′
1

+(μ2 + m2)

)
u2 =0, u2(0) = u̇2(0) = 0.

If eλ2 −eλ
′
2

eλ1−eλ
′
1

�= −1, then u2(t) = 0 for all t , hence u1 is also zero, that is a contradiction

as previous. If eλ2 −eλ
′
2

eλ1−eλ
′
1

= −1, then (μ1 − μ2)u2(t) = 0 for all t , hence u j is also zero,

that is a contradiction again. We conclude that λ1 = λ′
1. We can prove by the same way

that λ2 = λ′
2, and finally λ = λ′.

We now want to determine for which λ, the static solutions belong to Dom(Aλ).
Such a solution is given by ustat := (−�+ m2)−1δ0 which is equal to m2

8π3|Z |2 K2 (m |Z|)
when m �= 0 and − 1

4π3|Z |4 for m = 0, since L(ustat ) = −1. If we write ustat =
Ur + u0�0 + u1ϕ1 + u2ϕ2, we deduce from (2.20) and (2.21) that ustat ∈ H2, and its
coordinates are given by:

u1 = m2 + μ2

μ2 − μ1
, u2 = m2 + μ1

μ1 − μ2
, u0 = −m4 + m2(μ1 + μ2) + μ1μ2

2
,

Ur (0) = − m4

8π3 log m +
m4

8π3 F(0)− u0G0(0)− u1 F1(0)− u2 F2(0),

where F(0),G0(0) and Fj (0) are given by (2.22), (2.23) and (5.3). Since μ j �= −m2,
then u0 �= 0. Therefore ustat ∈ Dom(Aλ) iff

λ ∈ �(m) :=
{
λ ∈ R

3; λ0 = 1

u0

(
eλ1

μ1 − μ2
u1 +

eλ2

μ2 − μ1
u2 − Ur (0)

)}
.

At last it is clear that the time periodic solution e±imt | Z |−4 is in Dom(Aλ) iff
λ ∈ �(0). ��

The previous construction heavily depends on the choice of the different parameters
μ0, μ1, μ2, θ, γ1, γ2. We now want to make more clear the role of these parameters.
First we note that the changing of μ0 into μ′

0, does not affect u0, u1, u2 and it reduces
to replace λ0 by λ0 + G ′

0(0)− G0(0), where G ′
0(0) is defined by (2.23) with μ′

0, μ1, μ2.
Therefore, the set of all the linear forms

qλ(Vr (0), v0, v1, v2) = AVr (0) + α0v0 + α1v1 + α2v2, A, α j ∈ R

is obtained by varying μ1, μ2, μ1 �= μ2, μ j < 0, θ ∈ R, γ1, γ2 > 0.
As we have noticed, the case θ = 0 in (2.34) is not very interesting since in this case,

the dynamics is trivial for the initial data f, g in C∞
0 (R

6 \ {0}): the solution u satisfies
L(u) = 0 and ∂2

t u −�u = 0. It corresponds to the condition u0 = 0 that becomes by
(5.6) with μ′

j = μ j/4,

A = 0, v0 + (μ′
1 + μ′

2)v1 − μ′
1μ

′
2v2 = 0,
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where μ′
j := μ j/4 are any real numbers such that μ′

j < 0, μ′
1 �= μ′

2. If we put

α1 = μ′
1+μ′

2, α2 = −μ′
1μ

′
2, thenμ′

j are solutions of the polynomialμ2−α1μ−α2 = 0.
This equation has two negative distinct solutions if and only if the coefficients α j satisfy

α0 = 1, α1 < 0, −α2
1 < 4α2 < 0. (2.54)

For θ �= 0, we describe in terms of the coordinates (Vr (0), v0, v1, v2), all the families of
the linear forms that we have constructed. If we normalize by taking A = 1, (5.6) and
(2.36) show that:

α0 = 32π3 (λ0 − G0(0)) ,

α1 = (μ1 + μ2)

[
8π3 (λ0 − G0(0))− log 2

4
− 3

16
+
γ

4

]

+
μ2

1 log(|μ1|)− μ2
2 log(|μ2|)

8(μ1 − μ2)
− 16π3 γ1 + γ2

(μ1 − μ2)2
,

α2 = μ1μ2

[
−2π3 (λ0 − G0(0)) +

log 2

16
+

3

64
− γ

16

−μ1 log(| μ1 |)− μ2 log(| μ2 |)
32(μ1 − μ2)

]
+ 4π3μ1γ1 + μ2γ2

(μ1 − μ2)2
,

(2.55)

where G0(0) can be explicitly expressed by the formula (2.23) involving the Euler’s
constant γ , and μ0, μ1, μ2.

Conversely, we want to determine for which α := (α0, α1, α2), Vr (0)+α0v0 +α1v1 +
α2v2 is a linear form qλ associated with some μ j < 0, μ1 �= μ2, and γ j > 0.

Theorem 2.5. The whole family of the linear forms

qλ(Vr (0), v0, v1, v2) = Vr (0) + α0v0 + α1v1 + α2v2, α j ∈ R

of Theorem 2.1 obtained with all the values of μ1, μ2 < 0, μ1 �= μ2, λ ∈ R
3, is given

by the set A of α ∈ R
3 satisfying firstly

α0 +
α1

α1 +
√
α2

1 − 4α2

− α2(
α1 +

√
α2

1 − 4α2

)2 +
1

2
log

∣∣∣∣α1 +
√
α2

1 − 4α2

∣∣∣∣ <
3

4
− γ,

(2.56)

and secondly

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 < 0,
or

α2 = 0, α1 > 0,
or⎧⎪⎨

⎪⎩

0 < α1, 0 < 4α2 < α2
1,

α0 + α1

α1−
√
α2

1−4α2

− α2(
α1−

√
α2

1−4α2

)2 + 1
2 log

∣∣∣∣α1 −
√
α2

1 − 4α2

∣∣∣∣ > 3
4 − γ.

(2.57)
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If (α0, α1, α2) �= (α′
0, α

′
1, α

′
2), the dynamics are different: given two spherically sym-

metric functions f, g in C∞
0 (R

6 \ {0}), ( f, g) �= (0, 0), the solutions u and u′ of (2.10),
(2.11), (2.12) are different.

Given m > 0, the static solution u(Z) = K2(m|Z |)
|Z |2 belongs to D(q) iff

α ∈ �(m) =
{
α ∈ A, m2α0 +

α1

2
− 2α2

m2 = m2
(

4 log 2 + 3 − 4γ

32
− log m

)}
,

(2.58)

and for m ≥ 0, the time-periodic solutions e±imt

|Z |4 belong to D(q) iff

α ∈ �(0) =
{
(α0, α1, α2); α2 = 0, α1 > 0, α0 +

1

2
logα1 <

1

4
− log 2

2
− γ

}
.

(2.59)

Proof of Theorem 2.5. With (5.4) we can check that we have

qλ(Vr (0, v0, v1, v2) = Ur (0) + λ0u0 − γ1

μ1 − μ2
u1 − γ2

μ2 − μ1
u2

iff

λ0 = G0(0) +
α0

32π3 , (2.60)

γ1 = (μ1 − μ2)
[ α0

64π3μ
2
1 − α1

16π3μ1 − α2

4π3 − F1(0)
]
, (2.61)

γ2 = (μ2 − μ1)
[ α0

64π3μ
2
2 − α1

16π3μ2 − α2

4π3 − F2(0)
]
. (2.62)

Equation (2.60) yields no constraint on α j since λ0 is an arbitrary real number. In oppo-
site, (2.61) and (2.62) show that α = (α0, α1, α2) defines a linear form of the families qλ,
if and only if we can find μ1, μ2 < 0, μ1 �= μ2, γ1, γ2 > 0 solutions of these equations
that we can write as:

γ1 = μ1 − μ2

16π3 μ2
1Gα(μ1), γ2 = μ2 − μ1

16π3 μ2
2Gα(μ2), (2.63)

where

Gα(μ) = α0

4
− α1

μ
− 4α2

μ2 +
1

8
log(|μ|)− log 2

4
− 3

16
+
γ

4
.

We note that the conditions γ j > 0 in (2.63) are equivalent to the constraint

∃μi , μ j ; μi < μ j < 0, Gα(μi ) < 0 < Gα(μ j ).

An elementary study of the function Gα shows that this case occurs iff

∃μ∗ < 0, Gα(μ∗) = 0, G ′
α(μ∗) > 0. (2.64)

Since G ′
α(μ) = μ−3( 1

8μ
2 + α1μ + 8α2), we look for α such that

∃μ∗ < 0, Gα(μ∗) = 0,
1

8
μ2∗ + α1μ∗ + 8α2 < 0. (2.65)
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If μ± := 4

(
−α1 ±

√
α2

1 − 4α2

)
, an obvious equivalent condition is

α2
1 > 4α2, ∃μ∗ ∈ ]μ−, μ+

[∩] − ∞, 0[, Gα(μ∗) = 0.

Therefore, taking account of the asymptotic behaviour of Gα(μ) as μ → 0−, we have
to determine the set of α such that Gα(μ−) < 0, and Gα(μ+) > 0 when μ+ < 0. The
constraints (2.56), (2.57) easily follow.

Now we prove that different α yield to different dynamics. We can see that

u(t, Z) = Vr (t, Z) + v0(t)χ(Z) log(|Z|) + v1(t)
χ(Z)

|Z|2 + v2(t)
χ(Z)

|Z|4
is solution of (2.11) iff

0 = ∂2
t Vr −�Vr + m2Vr −

(
v0 log(|Z|) +

v1

|Z|2 +
v2

|Z|4
)
�χ

−
(

2
v0

|Z|2 − 4
v1

|Z|4 − 4
v2

|Z|6
)

Z .∇χ + (v̈0 + m2v0)χ log(|Z|)

+ (v̈1 + m2v1 − 4v0)
χ

|Z|2 + (v̈2 + m2v2 + 4v1)
χ

|Z|4 .

When u ∈ C2(Rt ; H0), we have Vr + v0χ log(| Z |) ∈ C2(Rt ; H2(R6)), v1, v2 ∈
C2(R). u ∈ C1(Rt ; H1) implies that v0 ∈ C1(R) and Vr ∈ C1(Rt ; H3(R6)). Finally
u ∈ C0(Rt ; D(qλ)) yields Vr ∈ C0(Rt ; H4(R6)). Now we consider a strong solution
u of which the initial data are two spherically symmetric functions f, g in C∞

0 (R
6 \

{0})( f, g) �= (0, 0). We know that there exists T such that v2(T ) �= 0. Taking account
of the regularity of each term in the previous equation, we get that

0 = ∂2
t Vr −�Vr + m2Vr −

(
v0 log(|Z|) +

v1

|Z|2 +
v2

|Z|4
)
�χ

−
(

2
v0

|Z|2 − 4
v1

|Z|4 − 4
v2

|Z|6
)

Z .∇χ + (v̈0 + m2v0)χ log(|Z|), (2.66)

0 = v̈1 + m2v1 − 4v0, (2.67)

0 = v̈2 + m2v2 + 4v1. (2.68)

We assume that u is solution associated with two linear forms with (α0, α1, α2) and
(α′

0, α
′
1, α

′
2). Then we have

(α0 − α′
0)v0(t) + (α1 − α′

1)v1(t) + (α2 − α′
2)v2(t) = 0.

Ifα0 �= α′
0 we can express v0 in terms of v1 and v2 in (2.67) and with (2.68) and the initial

data v j (0) = v̇ j (0) = 0 we obtain v1(t) = v2(t) = 0 for all t , that is a contradiction

with v2(T ) �= 0. We deduce that α0 = α′
0. Now if α1 �= α′

1, we express v1 by −α2−α′
2

α1−α′
1
v2

in (2.68) and we obtain v2 = 0 again, hence α1 = α′
1 and (α2 − α′

2)v2 = 0. Finally
since v2(T ) �= 0 we conclude that α2 = α′

2.
Finally to determine �(m) we use (5.2) to get the components of the static solution

|Z|−2 K2(m |Z|) : v2 = 2
m2 , v1 = − 1

2 , v0 = −m2, Vr (0) = −m2 log m + m2 F(0), and
the result follows from (5.3). To characterize �(0), we note that Vr (0) = v0 = v1 = 0
and v2 = eimt for the time periodic solution u(t, Z)= |Z|−4 e±imt . Hence u(t, .) ∈ D(q)
iff α2 = 0, and we conclude with (2.56) and (2.57).
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3. Super-Singular Perturbations of The 1 + 1D-Klein-Gordon equation

In this section we investigate the Cauchy problem for some super-singular perturbations
of the Klein-Gordon equation on the half line with a Bessel potential and a mass m ≥ 0:

{
∂2

t ψ − ∂2
zψ + 15

4z2ψ + m2ψ = 0, t ∈ R, z > 0,

ψ(0, z) = f (z), ∂tψ(0, z) = g(z) z > 0.
(3.1)

We recall some basic facts (see e.g. [4] p. 532). The Bessel operator

P2 := − d2

dz2 +
15

4z2 (3.2)

with domain C∞
0 (]0,∞[) is essentially self-adjoint in L2(0,∞) since 15/4 ≥ 3/2 and

its unique self-adjoint extension is the Friedrichs extension AF of which the domain is

dF :=
{
ψ ∈ L2(0,∞); P2ψ ∈ L2

}
=
{
ψ ∈ L2(0,∞); P2ψ, ψ

′, z−1ψ ∈ L2
}
.

As a consequence, the Cauchy problem is well-posed for f ∈ H1
0 (]0,∞[), g ∈

L2(0,∞) and the solutionψ ∈ C0(Rt ; H1
0 (]0,∞[)∩C1(Rt ; L2(0,∞)) is given by the

standard formula

ψ(t) = cos
(

t
√

AF + m2
)

f +
sin
(

t
√

AF + m2
)

√
AF + m2

g.

These solutions are called “Friedrichs solutions” of (3.1) and they satisfy the conserva-
tion of the natural energy

E(ψ) :=
∫ ∞

0
|∂tψ(t, z)|2 + |∂zψ(t, z)|2 +

(
m2 +

15

4z2

)
|ψ(t, z) |2dz,

and the Dirichlet condition at the origin:

ψ(t, 0) = 0.

We want to construct other solutions of (3.1) associated with other energies and other
constraints at z = 0. We could use the recent spectral results on the singular perturba-
tions of the Bessel operators in [12] but an easier way consists in using the link of P2
and the Laplace operator in R

6,

−�Z = z− 5
2

(
P2 − 1

z2�S5

)
z

5
2 .

In this way, we can apply the results of the previous section. Then the super-singular
perturbations of�Z restricted to the spherically symmetric functions, yield to hypersin-
gular perturbations of P2 in the spaces of the trace of the radial distributions (see [17]
for an extensive study of these spaces).

Now we perform the suitable functional framework. We introduce the differential
operators

P1 := d

dz
− 5

2z
, P∗

1 := − d

dz
− 5

2z
, (3.3)
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and, for 1 ≤ k ≤ 4, we define the Hilbert spaces hk as the closure of C∞
0 (]0,∞[) for

the following norms:

k =1, 2, ‖ψ‖2
hk := ‖ψ‖2

L2 + ‖Pkψ‖2
L2 , ‖ψ‖2

hk+2 :=‖ψ‖2
L2 + ‖Pk P2ψ‖2

L2 . (3.4)

Given χ ∈ C∞
0 (R) such that χ(z) = 1 in a neighborhood of z = 0, we introduce the

spaces

k = −1, 0, hk :=
{
ψ(z) = ψr (z) + v1χ(z)z

1
2 + v2χ(z)z

− 3
2 , ψr ∈ hk+2, v j ∈ C

}
,

(3.5)

h1 :=
{
ψ(z) = ψr (z) + v0χ(z)z

5
2 log z + v1χ(z)z

1
2

+v2χ(z)z
− 3

2 , ψr ∈ h3, v j ∈ C

}
, (3.6)

h2 :=
{
ψ(z) = ψr (z) + v−1χ(z)z

5
2 + v0χ(z)z

5
2 log z

+v1χ(z)z
1
2 + v2χ(z)z

− 3
2 , ψr ∈ h4, v j ∈ C

}
, (3.7)

and if X a space of distributions on R
6
Z , we introduce the subspace R X of the spherically

symmetric distributions of X :

R X := {u ∈ X; Zi∂Z j u − Z j∂Zi u = 0, 1 ≤ i < j ≤ 6
}
.

Given u ∈ RL2(R6
Z ) we associate ψu defined on ]0,∞[z by

ψu(|Z|) := |Z| 5
2 u(Z). (3.8)

Lemma 3.1. Givenψ ∈ L2(0,∞), ψ belongs to hk if and only if uψ(Z) := |Z|− 5
2 ψ(|Z|)

belongs to Hk(R6
Z ) and uψ(0) = 0 for k = 4. As a consequence, we have

h4 ⊂ h3 ⊂ h2 ⊂ h1,

ψ ∈ h1, |ψ(z)| ≤Cz
1
2 , ψ ∈ h2, |ψ(z)| ≤Cz

3
2 , (3.9)

ψ ∈ h3, |ψ(z)| ≤Cz
5
2
√|log z |, ψ ∈ h4, lim

z→0+
z− 5

2ψ(z) = 0, (3.10)

− 1 ≤ k ≤ 2, hk = {ψu; u ∈ RHk} . (3.11)

The coefficients v j do not depend on the choice of the function χ and v−1 = Vr (0) when
ψ ∈ h2 and uψ = Vr + v0χ log |Z| + v1χ |Z|−2 + v2χ |Z|−4. The spaces hk are Hilbert
spaces for the norms

‖ψ‖2
hk

:= ‖ψr‖2
hk+2 +

∑
j

|v j|2 . (3.12)
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Proof of Lemma 3.1. We remark that for u ∈ RC∞
0 (R

6\{0}) we have
∫

R6
|u(Z)|2 d Z = π3

∫ ∞

0
|ψu(z)|2 dz,

∫

R6
|∇Z u(Z)|2 d Z

= π3
∫ ∞

0
|ψ ′

u(z)− 5

2z
ψu(z)|2 dz, (3.13)

∫

R6
|�Z u(Z)|2 d Z = π3

∫ ∞

0
|ψ ′′

u (z)− 15

4z2ψu(z)|2 dz.

We deduce that u �→ π− 3
2ψu is an isometry from RC∞

0 (R
6\{0}) endowed with a suitable

Hk(R6)-norm, into RC∞
0 (]0,∞[) endowed with the hk-norm. Since RC∞

0 (R
6 \ {0}) is

dense in Hm(R6) for m ≤ 3, we conclude that

k = −1, 0, 1, hk+2 =
{
ψu; u ∈ RHk+2(R6)

}
, hk = {ψu; u ∈ RHk} (3.14)

and (3.12) defines a norm ‖ψu‖hk ∼ ‖u‖Hk , for which hk is a Hilbert space.
On the other hand, the Sobolev embedding H4(R6) ⊂ C0(R6) implies that the closure

of RC∞
0 (R

6 \ {0}) in RH4(R6) is the set of functions u ∈ RH4 that are zero at Z = 0,

and RH4(R6) = RC∞
0 (R

6 \ {0})⊕ Cχ(|Z|). We conclude that limz→0+ z− 5
2ψ(z) = 0

when ψ ∈ h4 and

h4 =
{
ψu; u ∈ RH4(R6), u(0) = 0

}
, h4 ⊕ Cχ(z)z

5
2 =

{
ψu; u ∈ RH4(R6)

}
,

h2 = {ψu; u ∈ RH2} .
The decay near the origin (3.9), (3.10) for k = 1, 2, 3 are consequences of Theo-

rems 13 and 14 of [17]. To achieve the proof of the lemma, we remark that χ(z)z
1
2 /∈

h1, χ(z)z
5
2 log z ∈ h2 \ h3, χ(z)z

5
2 ∈ h3 \ h4. Then the coefficients v j only depend on

ψ and since Vr (Z)= |Z |− 5
2 ψr (|Z |) = +v−1χ(|Z |), we have v−1 = Vr (0). Finally

since ‖u‖H4 ∼ ‖ψr‖h4 + | v−1 | for u ∈ RH4(R6), we have ‖u‖H2 ∼ ‖ψu‖h2 and it is
clear that (3.12) defines a norm for which h2 is a Hilbert space.

We now introduce the “boundary conditions”. Given α = (α0, α1, α2) ∈ R
3, we

consider the Hilbert subspace

dα := {ψ ∈ h2; v−1 + α0v0 + α1v1 + α2v2 = 0} , (3.15)

and we denote Aα the differential operator P2 endowed with dα as domain. The existence
of super-singular perturbations of the Bessel operator P2 is stated by the following:

Proposition 3.2. For all α = (α0, α1, α2) ∈ R
3 satisfying the constraints (2.56) and

(2.57), there exists a hermitian product on h0, equivalent to the initial ‖.‖h0 -scalar prod-
uct, for which Aα is a semi-bounded from below, self-adjoint operator on h0. Its essential
spectrum is [0,∞[. Its point spectrum is a set of 0, 1, 2 or 3 non positive eigenvalues

−λ2
j , associated with eigenfunctions ψ j (z) = √

zK2(λ j z) if λ j > 0, ψ j (z) = z− 3
2 if

λ j = 0. Moreover λ2
j > 0 are the roots of the equation:

log x + 2α0 +
8α1

x
− 32α2

x2 = 0, (3.16)



746 A. Bachelot

and 0 is eigenvalue iff α belongs to �(0) defined by (2.59). In particular, the point
spectrum is empty for all α such that

α2 < 0, − log 2 < α0 +
α1

α1 +
√
α2

1 − 4α2

− α2(
α1 +

√
α2

1 − 4α2

)2

+
1

2
log

(
α1 +

√
α2

1 − 4α2

)
<

3

4
− γ, (3.17)

and 0 is the unique eigenvalue when

α2 = 0 < α1, −1

2
− 3

2
log 2 < α0 +

1

2
logα1 <

1

4
− 1

2
log 2 − γ, (3.18)

Proof of Proposition 3.2. The previous lemma assures that the map ψ �→ uψ defined
by

ψ(z)=ψr (z)+v1χ(z)z
1
2 +v2χ(z)z

− 3
2 �−→uψ(Z)= ψr (|Z|)

|Z| 5
2

+v1
χ(|Z|)
|Z|2 +v2

χ(|Z|)
|Z|4

(3.19)

is an isometry from h0 onto RH0, where H0 is the space (2.3) endowed with the equiv-
alent norm

π− 3
2

⎛
⎝‖vr‖2

L2(R6)
+ ‖�vr‖2

L2(R6)
+

2∑
j=1

|v j|2
⎞
⎠

1
2

.

Moreover we have for any ψ ∈ h1

u P2ψ = −�uψ − 4π3v2δ0(Z).

Now we consider μ1, μ2 < 0, μ1 �= μ2, λ0 ∈ R, γ1, γ2 > 0 associated with α by The-
orem 2.5, and we endow H0 with the norm ‖.‖0 given by (2.28) for which Aλ defined
by (2.29) and (2.31) is semi-bounded from below, self-adjoint. We remark that
(
Zi∂ j − Z j∂i

)
(−�Z + L(u)δ0) = −�Z = (−�Z + L(u)δ0)

(
Zi∂ j − Z j∂i

)
,

hence the restriction of Aλ to RH0 with the domain RDom(Aλ) is a densely defined
self-adjoint operator that we denote RAλ. Since

dα = {ψu; u ∈ RDom(Aλ)} , Aλuψ = u P2ψ,

we conclude that if h0 is endowed with the equivalent norm

‖ψ‖0 := ‖uψ‖0, (3.20)

where ‖uψ‖0 is defined by (2.28), then Aα is unitarily equivalent to RAλ. Therefore it is
semi-bounded from below, and self-adjoint on h0. We introduce the operator A0 defined
as the differential operator P2 provided with

d0 := {ψu; u ∈ RH2, u0 = 0}
=
{
ψu; u = Ur + u1ϕ1(Z) + u2ϕ2(Z), Ur ∈ RH4(R6

Z ), u j ∈ C

}
.

(3.21)
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Then A0 is unitarily equivalent to RA0 where A0 is given by (2.35). Since the essen-
tial spectrum of the Laplacien considered as an operator on RH2(R6) endowed with
its natural domain RH4(R6) is [0,∞[, and (A0 + i)−1 − (Aα + i)−1 is finite rank, we
conclude by the Weyl theorem that σess(Aα) = [0,∞[.

Now given λ > 0, the solutions of P2ψ = λ2ψ are given by ψ(z) = A
√

z J2(λz) +

B
√

zY2(λz). Since ψ(z) ∼ −
√

2
π

[
A cos(z − π

4 ) + B sin(z − π
4 )
]
, ψ does not belong

to h0 when (A, B) �= (0, 0). We conclude that the eigenvalues of P2 are non positive.
On the other hand, the solutions of P2ψ = −λ2ψ are given by ψ(z) = A

√
z I2(λz) +

B
√

zK2(λz). Since I2(z) ∼ 1√
2π z

ez as z → ∞, and taking account of (5.2), the eigen-

function in h0 is

ψ(z) = √
zK2(λz) = λ4z

9
2 G(λ2z2) log(λz) + λ2z

5
2 F(λ2z2)−

(
λ2

8
log λ

)
z

5
2

−λ
2

8
z

5
2 log z − 1

2
z

1
2 +

2

λ2 z− 3
2 .

Then v−1 = −λ2

8 log λ, v0 = −λ2

8 , v1 = 1
2 , v2 = 2

λ2 satisfy v−1 + α0v0 +

α1v1 + α2v2 = 0 iff λ2 is a strictly positive solution of (3.16). To determine
the number of these roots, we study the function h(x) := log x + 2α0 + 8α1

x −
32α2

x2 . When α2 < 0, or when α2 = 0 and α1 > 0, h is decreasing from +∞
to inf h = 2

(
α0 + α1

α1+
√
α2

1−4α2

− α2

(α1+
√
α2

1−4α2)2
+ 1

2 log(α1 +
√
α2

1 − 4α2) + log2

)

when x ∈]0, 4(α1 +
√
α2

1 − 4α2)], and from inf h to +∞ for x ∈ [4(α1 +√
α2

1 − 4α2),∞[. We deduce that there exists 0, 1 or 2 roots according to inf h >

0, inf h = 0, inf h < 0. Then (3.17) and (3.18) follow from (2.56) and (2.59).
Finally when 0 < 4α2 < α2

1 and 0 < α1, h is increasing from −∞ to

2

(
α0 + α1

α1−
√
α2

1−4α2

− α2

(α1−
√
α2

1−4α2)2
+ 1

2 log(α1 −
√
α2

1 − 4α2) + log2

)
when x ∈

]0, 4(α1 −
√
α2

1 − 4α2)], decreasing for x ∈]4(α1 −
√
α2

1 − 4α2), 4(α1 +
√
α2

1 + 4α2)],
and increasing to +∞ for x > 4(α1 +

√
α2

1 + 4α2). We conclude that in this case there
exists 1, 2 or 3 strictly negative eigenvalues. ��

Now we consider the Cauchy problem (3.1). We look for the weak solutions with the
Ansatz

ψ(t, z) = ψr (t, z) + v0(t)χ(z)z
5
2 log z + v1(t)χ(z)z

1
2 + φ2(t)z

− 3
2 , (3.22)

v1, φ2 ∈ C2(R), ψr (t, z) + v0(t)χ(z)z
5
2 log z ∈ C2(Rt ; h1) ∩ C1(Rt ; h2),

v0 ∈ C0(R), ψr ∈ C0(Rt ; h3),

and we want to construct the strong solutions that satisfy

ψr (t, z) = ψR(t, z) + v−1(t)χ(z)z
5
2 , v−1 ∈ C0(R), ψR ∈ C0(Rt ; h4),
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and the boundary condition

v−1(t) + α0v0(t) + α1v1(t) + α2φ2(t) = 0, t ∈ R.

We can state the main result of this part:

Theorem 3.3. Let α = (α0, α1, α2) be in R
3 satisfying the constraints (2.56) and (2.57).

Then for all m ≥ 0 and any f ∈ h1, g ∈ h0, the Cauchy problem (3.1) has a unique
solution

ψα ∈ C0 (Rt ; h1) ∩ C1 (Rt ; h0) ∩ C2 (Rt ; h−1) ∩ D′ (Rt ; dα) , (3.23)

moreover there exists C, K > 0 independent of m ≥ 0 such that

‖∂tψα(t)‖h0 + ‖ψα(t)‖h1 + m‖ψα(t)‖h0

≤ C
(‖g‖h0 + ‖ f ‖h1 + m‖ f ‖h0

)
e(K−m2)+|t |, (3.24)

and for all � ∈ C∞
0 (Rt ) we have:

‖
∫
�(t)ψα(t)dt‖h2

≤ C
(‖g‖h0 +‖ f ‖h1 +m‖ f ‖h0

) ∫ (|�(t) |+ |�′′(t) |) e(K−m2)+|t |dt. (3.25)

There exists a conserved energy, i.e. a non-trivial, continuous quadratic form Eα defined
on h1 ⊕ h0, that satisfies:

∀t ∈ R, Eα (ψα(t), ∂tψα(t)) = Eα( f, g). (3.26)

This energy is not positive definite in general but Eα is equivalent to ‖ f ‖2
h1

+ ‖g‖2
h0

on
C∞

0 (]0,∞[)⊕ C∞
0 (]0,∞[) and given for f, g ∈ C∞

0 (]0,∞[) by

Eα( f, g) = ‖P1 P2 f ‖2
L2 − (μ1 + μ2)‖P2 f ‖2

L2 + μ1μ2‖P1 f ‖2
L2

+m2
(
‖P2 f ‖2

L2 − (μ1 + μ2)‖P1 f ‖2
L2 + μ1μ2‖ f ‖2

L2

)

+‖P2g‖2
L2 − (μ1 + μ2)‖P1g‖2

L2 + μ1μ2‖g‖2
L2 (3.27)

for some μ1 < μ2 < 0. When α satisfies (3.17) or (3.18), Eα is positive on h1 ⊕ h0.
The propagation is causal, i.e.

supp(ψα(t, .)) ⊂ {z; |z| ≤ |t|} + [supp( f ) ∪ supp(g)] . (3.28)

For all ( f, g) ∈ h1 × h0, ( f, g) �= (0, 0), we have φ2 �= 0. In particular, when
f, g ∈ C∞

0 (]0,∞[), ( f, g) �= (0, 0), then ψα is not the Friedrichs solution.
If f, g ∈ C∞

0 (]0,∞[), ( f, g) �= (0, 0), then ψα �= ψα′ if α �= α′.
When f ∈ dα, g ∈ h1 then ψα satisfies:

ψα ∈ C0 (Rt ; dα) ∩ C1 (Rt ; h1) ∩ C2 (Rt ; h0) , (3.29)

‖∂tψα(t)‖h1 + ‖ψα(t)‖h2 + m‖ψα(t)‖h1 ≤ C
(‖g‖h1 + ‖ f ‖h2 + m‖ f ‖h1

)
e(K−m2)+|t |.

(3.30)
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It is interesting to remark that the leading term φ2(t)z− 3
2 completely characterizes

the whole solution ψα since the continuous linear map

( f, g) ∈ h1 × h0 �−→ φ2 ∈ C2(R) (3.31)

is one-to-one.

Proof of Theorem 3.3. We consider μ1, μ2 < 0, μ1 �= μ2 and λ ∈ R
3 that are associ-

ated with α by Theorem 2.5. We introduce uλ(t, Z) := |Z | 5
2 ψα(|Z |). Then Lemma

3.1 assures that uλ ∈ Cm(Rt ; Hk) iff ψα ∈ Cm(Rt ; hk) and uλ ∈ D′(Rt ; D(qλ) iff
ψα ∈ D′(Rt ; dα). Moreover since Aα is unitarily equivalent to RAλ, we can see that ψα
is the wanted solution iff uλ is the solution of (2.10) and (2.11) with the corresponding
initial data. Therefore Theorem 2.1 gives the existence, the uniqueness, the estimates
of the solution of the Cauchy problem (3.1). Theorem 2.4 provides the finite velocity
result (3.28) and the fact that if ( f, g) �= (0, 0), thenψα is not a Friedrichs solution since
the dynamics for uλ is not trivial. Moreover Theorem 2.5 implies that different α yield
to different solutions when f, g ∈ C∞

0 (]0,∞[), ( f, g) �= (0, 0). Finally the energy is
given for the strong solutions by

Eα(ψα, ∂tψα) := 〈Aαψα;ψα〉0 + m2 ‖ψα‖2
0 + ‖∂tψα‖2

0 = π3Eλ(uλ, ∂t uλ), (3.32)

where the norm ‖.‖0 is defined by (3.20), and this energy is positive when α satisfies
(3.17) or (3.18) since the spectrum of Aα is [0,∞[ in this case by Proposition 3.2. At
last, the expression (3.27) is obtained by a direct computation by using the facts that
P∗

1 P1 = P2 and for uλ ∈ C∞
0 (R

6 \ {0}) we have:

‖uλ‖2
H2 = π3 〈(P2 − μ1)ψα; (P2 − μ2)ψα〉L2(0,∞) ,

‖∇Z uλ‖2
H2 = π3 〈P1(P2 − μ1)ψα; P1(P2 − μ2)ψα〉L2(0,∞) .

��
We end this part by some remarks. Firstly, we note that when α satisfies (3.17) or

(3.18), the operator Aα is a positive self-adjoint operator in (h0, ‖.‖0). Then, in this case,
the solution is just given by the spectral functional calculus:

ψα(t, .) = cos
(

t
√

Aα + m2
)

f +
sin
(

t
√

Aα + m2
)

√
Aα + m2

g,

and we can solve the Cauchy problem in the scale of the Hilbert spaces associated with
the powers of Aα . More precisely, when m > 0 or when α satisfies (3.17), the Cauchy

problem is well-posed for f ∈
[

Dom

((
Aα + m2

) s+1
2

)]
, g ∈

[
Dom

((
Aα + m2

) s
2
)]
,

where [Dom(B)] denotes the completion of Dom(B) for the norm ‖B.‖0. Secondly,

when α satisfies (3.18), the kernel of Aα is Cz− 3
2 and the time-periodic solutions

e±imt z− 3
2 belong to C0 (Rt ; dα). We can express ψα in terms of the graviton part sup-

ported by z− 3
2 :

ψα(t, z) = ψ0
α(t)z

− 3
2 + ψ⊥

α (t, z),
〈
ψ⊥
α (t, .); z− 3

2

〉
0

= 0, (3.33)
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where the amplitude of the graviton is given by

ψ0
α(t) = ‖z− 3

2 ‖−2
0

(
cos(mt) < f ; z− 3

2 >0 +
sin(mt)

m
< g; z− 3

2 >0

)
, (3.34)

and we have to replace sin(mt)
m by t when m = 0. Finally, if we could establish the

absence of singular continuous spectrum of Aα in h0, then ψ⊥
α (t, .) would tend weakly

to zero as | t |→ ∞. As a consequence, if we expand ψ⊥
α (t, .) as

ψ⊥
α (t, z) == ψ⊥

r (t, z) + v⊥
0 (t)χ(z)z

5
2 log z + v⊥

1 (t)χ(z)z
1
2 + φ⊥

2 (t)z
− 3

2 ,

we have

v⊥
0 (t) → 0, v⊥

1 (t) → 0, φ⊥
2 (t) → 0 as | t |→ ∞. (3.35)

An interesting consequence would be

φ2(t)− ψ0
α(t) → 0, | t |→ ∞, (3.36)

i.e. the more singular part in the expansion (3.22) would be asymptotically given by the
graviton.

4. New Dynamics in Ad S5

In this section we construct new unitary dynamics for the gravitational waves in the
Anti-de Sitter universe. We consider the Cauchy problem

(
∂2

t −�x − ∂2
z +

15

4z2

)
� = 0, t ∈ R, x ∈ R

3, z ∈]0,∞[, (4.1)

�(0, x, z) = �0(x, z), ∂t�(0, x, z) = �1(x, z). (4.2)

We look for the solutions that have an expansion of the following form

�(t, x, z) = �r (t, x, z)z
5
2 + φ−1(t, x)χ(z)z

5
2 + φ0(t, x)χ(z)z

5
2 log z

+φ1(t, x)χ(z)z
1
2 + φ2(t, x)z− 3

2 , (4.3)

where χ ∈ C∞
0 (R), χ(z) = 1 in a neighborhood of 0 and

�r (t, x, 0) = 0. (4.4)

The term φ2(t, x)z− 3
2 is the part of the wave in the sector of the massless graviton.

The behaviour of the field on the boundary of the universe is assumed to be for some
(α0, α1, α2) ∈ R

3:

φ−1(t, x) + α0φ0(t, x) + α1φ1(t, x) + α2φ2(t, x) = 0, t ∈ R, x ∈ R
3. (4.5)
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We introduce the following Hilbert spaces endowed with the natural norms (h0 being
provided with the norm (3.20)):

H0 := L2
(
R

3
x; h0

)
=
{
�(x, z) = φr (x, z) + φ1(x)χ(z)z

1
2 + φ2(x)z− 3

2 ,

φr ∈ L2(R3
x; h2), φ j ∈ L2(R3

x)
}
, (4.6)

H1 :=
{
� ∈ L2

(
R

3
x; h1

)
; ∇x� ∈ H0

}

=
{
�(x, z) = φr (x, z) + φ0(x)χ(z)z

5
2 log z + φ1(x)χ(z)z

1
2 + φ2(x)z− 3

2 ,

φr ∈ L2(R3
x; h3), φ0 ∈ L2(R3

x), φ1, φ2 ∈ H1(R3
x),

∇x

(
φr + φ0χ z

5
2 log z

)
∈ L2(R3

x; h2)
}
, (4.7)

H2 :=
{
� ∈ L2

(
R

3
x; h2

)
; ∇x� ∈ H1

}
. (4.8)

In particular, � ∈ H2 iff

�(x, z)=�r (x, z)z
5
2 +φ−1(x)χ(z)z

5
2 +φ0(x)χ(z)z

5
2 log z + φ1(x)χ(z)z

1
2 + φ2(x)z− 3

2

(4.9)

with
⎧⎪⎪⎨
⎪⎪⎩

φ−1 ∈ L2(R3
x), φ0 ∈ H1(R3

x), φ1, φ2 ∈ H2(R3
x), �r (x, z)z

5
2 ∈ L2(R3

x; h4),

∇x

(
�r (x, z)z

5
2 + φ−1(x)χ(z)z

5
2

)
∈ L2(R3

x; h3),

∇2
x

(
�r (x, z)z

5
2 + φ−1(x)χ(z)z

5
2 + φ0(x)χ(z)z

5
2 log z

)
∈ L2(R3

x; h2).

(4.10)

For convenience and to make more clear the role of the massless graviton, we have omit-

ted the cut-off function χ(z) in front of φ2(x)z− 3
2 . It is clear that this minor change does

not affect the definition of the spaces since (1 −χ(z))φ2(x)z− 3
2 belongs to Hm(R3

x; h4)

when φ2 ∈ Hm(R3
x).

To take account of the constraint (4.5), we introduce the subspace:

Dα := {� ∈ H2; φ−1(x) + α0φ0(x) + α1φ1(x) + α2φ2(x) = 0} . (4.11)

The main result of this paper is the following:

Theorem 4.1. Let α = (α0, α1, α2) be in R
3 satisfying the constraints (2.56) and (2.57).

Then for any�0 ∈ H1,�1 ∈ H0, the Cauchy problem (4.1), (4.2) has a unique solution

�α ∈ C0 (Rt ;H1) ∩ C1 (Rt ;H0) ∩ D′ (Rt ;Dα) . (4.12)

Moreover there exists C, κ > 0 independent of � j such that:

‖∂t�α(t)‖H0 + ‖�α(t)‖H1 ≤ C
(‖�1‖H0 + ‖�0‖H1

)
eκ|t |, (4.13)

and for all � ∈ C∞
0 (Rt ) we have:

‖
∫
�(t)�α(t)dt‖H2 ≤C

(‖�1‖H0 +‖�0‖H1

) ∫ (|�(t)|+ |�′′(t)|) eκ|t |dt. (4.14)
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When �0,�1 ∈ C∞
0

(
R

3
x×]0,∞[), (�0,�1) �= (0, 0), then φ2 �= 0 hence �α is not

the Friedrichs solution. Moreover the map

�α : (�0,�1)∈H1 × H0 �−→ φ2 ∈ C0
(
Rt ; H1

(
R

3
x

))
∩C1

(
Rt ; L2

(
R

3
x

))
(4.15)

is linear continuous and one-to-one.
For any �0,�1 ∈ C∞

0

(
R

3
x×]0,∞[), (�0,�1) �= (0, 0), we have �α �= �α′ if

α �= α′.
There exists a conserved energy, i.e. a non-trivial, continuous quadratic form Eα

defined on H1 ⊕ H0, that satisfies:

∀t ∈ R, Eα (�α(t), ∂t�α(t)) = Eα(�0,�1). (4.16)

This energy is not positive definite in general but Eα is equivalent to ‖�0‖2
H1

+ ‖�1‖2
H0

on C∞
0 (R

3
x×]0,∞[z)⊕ C∞

0 (R
3
x×]0,∞[z) and given for �0,�1 ∈ C∞

0 (R
3
x×]0,∞[z)

by

Eα(�0,�1) = ‖P1 P2�0‖2
L2 − (μ1 + μ2)‖P2�0‖2

L2 + μ1μ2‖P1�0‖2
L2

+‖∇x P2�0‖2
L2 −(μ1+μ2)‖∇x P1�0‖2

L2 +μ1μ2‖∇x�0‖2
L2

+‖P2�1‖2
L2 − (μ1 + μ2)‖P1�1‖2

L2 + μ1μ2‖�1‖2
L2 (4.17)

for some μ1 < μ2 < 0. When α satisfies (3.17) or (3.18), Eα is positive on H1 ⊕ H0.
When �0 ∈ Dα,�1 ∈ H1 then �α satisfies:

�α ∈ C0 (Rt ;Dα) ∩ C1 (Rt ;H1) ∩ C2 (Rt ;H0) , (4.18)

‖∂t�α(t)‖H1 + ‖�α(t)‖H2 ≤ C
(‖�1‖H1 + ‖�0‖H2

)
eκ|t |. (4.19)

There exists M > 0 such that if �̂ j (ξξξ, z) = 0 for all | ξξξ |≤ M, then we can take κ = 0
in the estimates (4.13), (4.14) and (4.19) and Eα(�0,�1) > 0.

When the equation

log x + 2α0 +
8α1

x
− 32α2

x2 = 0, (4.20)

has a solution x = m2,m>0, thenφ[m](t, x)z
1
2 K2(mz), whereφ[m] ∈C0(Rt ; H2(R3

x))∩
C1(Rt ; H1(R3

x)) is a solution of ∂2
t φ[m] −�xφ[m] − m2φ[m] = 0, is a solution that sat-

isfies (4.18).

When α satisfies (3.18), the massless graviton �G(t, x, z) := φ[0](t, x)z− 3
2 where,

φ[0] ∈ C0(Rt ; H2(R3
x)) is solution of ∂2

t φ[0] − �xφ[0] = 0, is a solution of (4.1) that
satisfies (4.18), and its energy is given by

Eα(�G , ∂t�G) = ‖z− 3
2 ‖2

0

∫

R3
x

|∇t,xφ[0](t, x)|2dx. (4.21)

Proof of Theorem 4.1. We shall use the partial Fourier transform with respect to x that
is denoted Fx. Let �α be a solution of (4.1), (4.2), (4.18). Given T > 0,�α ∈ H1

(]−T, T [;H1) ⊂ L2(R3
x; H1(]−T, T [; h1)). Then Fx�α ∈ L2(R3

ξξξ ; H1(]−T, T [; h1)) ⊂
L2(R3

ξξξ ; C0([−T, T ]; h1)). We have also ∂t�α ∈ H1(] − T, T [;H0) ⊂ L2(R3
x; H1

(]−T, T [; h0)). Then ∂tFx�α ∈ L2(R3
ξξξ ; H1(]−T, T [; h0)) ⊂ L2(R3

ξξξ ; C0([−T, T ]; h0)).
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Moreover �α ∈ L2(] − T, T [;Dα) ⊂ L2(R3
x; L2(] − T, T [; dα)). Then Fx�α ∈

L2(R3
ξξξ ; L2(]−T, T [; dα)).

We deduce that for almost all ξξξ ∈ R
3, Fx�α(t, ξξξ, z) is the unique solution ψξξξ ,

satisfying (3.23), of (3.1) with

m =|ξξξ |, f (z) = Fx�0(ξξξ, z), g(z) = Fx�1(ξξξ, z). (4.22)

Hence we conclude that

�α(t, x, z) = F−1
ξξξ

(
ψξξξ (t, z)

)
(x), (4.23)

and we get the uniqueness of the solution.
More generally, when�α is a solution of (4.1), (4.2), (4.12), we take θ ∈ C∞

0 (R) such
that 0 ≤ θ,

∫
θ(t)dt = 1, and we consider�α,n(t, x, z) = n

∫
θ(nt −ns)�α(s, x, z)ds.

We can easily prove that�α,n tends to�α in C0 (Rt ;H1)∩C1 (Rt ;H0)∩C2 (Rt ;H−1)∩
D′ (Rt ;Dα) as n → ∞, and�α,n is a solution of (4.1), (4.18). The previous result shows
that

�α,n(t, x, z) = F−1
ξξξ

(
ψξξξ,n(t, z)

)
(x),

where ψξξξ,n is solution of (3.1) with m = | ξξξ |, f (z) = Fx�α,n(0, ξξξ, z), g(z) =
Fx∂t�α,n(0, ξξξ, z) satisfying (3.23). Since�α,n(0, x, z) and ∂t�α,n(0, x, z) tend respec-
tively to �0 and �1 in H1 and H0, then Fx�α,n(0, ξξξ, z) and Fx∂t�α,n(0, ξξξ, z) tend
respectively to Fx�0(ξξξ, z) and Fx�1(ξξξ, z) in L2(R3

ξξξ ; h1) and L2(R3
ξξξ ; h0). We deduce

by (3.24) that ψξξξ,n tends in L2(R3
ξξξ ; L2([−T, T ]; h1) to the solution ψξξξ of (3.1), (3.24)

with the data (3.24). We conclude that (4.23) is true again and the proof of the uniqueness
is complete.

To establish the existence of the solution, it is sufficient to solve the Cauchy problem
and to get estimates (4.13), (4.13), (4.19) for a dense subspace of initial data. Hence we
consider the case where there exists R > 0 such that Fx� j (ξξξ, z) = 0 for any |ξξξ |> R.
Then we get by the Lebesgue theorems, the Parseval equality and Theorem 3.3, that

�α(t, x, z) := 1

(2π)
3
2

∫

|ξξξ |≤R
eix.ξξξψξξξ (t, z)dξξξ

is the wanted solution, moreover estimates (4.13), (4.14), (4.19) directly follow from
the integration of (3.24), (3.25), (3.30) with respect to ξξξ , and we can take κ = 0 when
�̂ j (ξξξ, z) = 0 for all |ξξξ|≤ M where M = √

K .
The continuity of �α is deduced from (4.6), (4.7) and (4.12). To prove the injectivity,

we suppose that φ2 = 0 for some�0 ∈ H1,�1 ∈ H0, then we have Fxφ2 = 0 and The-
orem 3.3 implies that ψξξξ (t, z) = 0. We conclude that�0 = �1 = 0. Now if�α = �α′ ,
then Fx�α = Fx�α′ and this theorem assures that α = α′.

The properties of the energy are obtained by the same way from (3.26) and (3.27)
with the Parseval equality and the formula

Eα (�α(t), ∂t�α(t)) =
∫

Eα
(
ψξξξ (t), ∂tψξξξ (t)

)
dξξξ .

We also have with (3.32):

Eα (�0,�1) =
∫

〈AαFx�0(ξξξ, .);Fx�0(ξξξ, .)〉0 dξξξ + ‖∇x�0‖2
H0

+ ‖�1‖2
H0
,



754 A. Bachelot

that proves (4.21). Finally, since Proposition 3.2 assures that for m > 0, ψm(z) :=
z

1
2 K2(mz), and for m = 0 ψ0(z) := z− 3

2 , satisfy (P2 + m2)ψm = 0, and belong to dα
when x = m2 > 0 is a solution of (4.20), or α satisfies (3.18) for m = 0. We conclude
that �α(t, x, z) = φ[m](t, x)ψm(z) are solutions of (4.1) satisfying (4.18). ��

We conclude this paper with some comments. If we expand the strong solution as

�α(t, x, z) = φr (t, x, z) + φ0(t, x)χ(z)z
5
2 log z + φ1(t, x)χ(z)z

1
2 + φ2(t, x)z− 3

2 ,

(4.24)

then we can see with (4.9) and (4.10) that Eq. (4.1) is equivalent to a system of coupled
PDEs (we denote � := ∂2

t −�x):

�φ2 + 4φ1 = 0, (4.25)

�φ1 − 4φ0 = 0, (4.26)[
� − ∂2

z +
15

4z2

] (
φr + χ(z)z

5
2 log(z)φ0

)

= −4χ(z)z
1
2φ0 +

(
χ ′′(z)z

1
2 + χ ′(z)z− 1

2 + 4(1 − χ(z))z− 3
2

)
φ1, (4.27)

supplemented by the boundary constraint at the time-like horizon:

lim
z→0

z− 5
2 φr (t, x, z) + α0φ0(t, x) + α1φ1(t, x) + α2φ2(t, x) = 0. (4.28)

The leading term of �α in (4.24) is φ2(t, x)z− 3
2 , and φ2 has to be considered as the

regularized boundary value of the field,

φ2(t, x) := lim
z→0

z
3
2�α(t, x, z). (4.29)

This renormalization can be expressed by the operator �α defined by (4.15), which asso-
ciates the field φ2 on the conformal boundary, to the field into the bulk. In the context of
the Ad S/C FT conjecture, the fundamental question of the injectivity of this operator
arises. Our crucial result states that �α is one-to-one, therefore we have established the
validity of a kind of holographic principle: the boundary value φ2 entirely characterizes
the whole field in the bulk, and consequently we may regard φ2 as the hologram of �α .

As regards the asymptotic dynamics on the boundary, we note by (4.25) that φ2 is not
a free wave in the Minkowski space-time (see below for a link with the massless grav-

iton), and �F := φr + χ(z)z
5
2 log(z)φ0 is a Friedrichs solution of the inhomogeneous

wave equation of the gravitational fluctuations, i.e. �F satisfies (1.3). The part of the

field given by φ1(t, x)χ(z)z
1
2 is rather peculiar and specific to our functional framework:

it satisfies the Dirichlet condition on the boundary without being a Friedrichs field since
its H1-norm is infinite.

A particularly significant family of constraints on the boundary of the Anti-de Sitter
universe is given by the condition (3.18) that corresponds to

φ−1(t, x) + α0φ0(t, x) + α1φ1(t, x) = 0

with

0 < α1, −1

2
− 3

2
log 2 < α0 +

1

2
logα1 <

1

4
− 1

2
log 2 − γ.
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In this case the energy is positive and
√

Eα(�0,�1) is a norm on H1 × H0. Hence we
can consider the Hilbert space K1 × H0 defined as the completion of this space for this
norm. We remark that H1 �= K1 since

‖φ(x)z− 3
2 ‖2

K1
= ‖z− 3

2 ‖2
0

∫

R3
x

|∇xφ(x)|2dx,

‖φ(x)z− 3
2 ‖2

H1
= ‖φ(x)z− 3

2 ‖2
K1

+ ‖z− 3
2 ‖2

h1

∫

R3
x

|φ(x)|2dx.

Then the Cauchy problem is well posed in K1 ×H0 and the solution is given by a unitary
group. Finally (3.33), (3.34) and (4.23) allow to split the solution �α into a massless
graviton �G and an orthogonal part �⊥, solutions of (4.1) satisfying:

�α = �G +�⊥, �G(t, x, z) = φ[0](t, x)z− 3
2 ,

where

∂2
t φ[0] −�xφ[0] = 0, φ[0](0, x) = ‖z− 3

2 ‖−2
0

〈
�0(x, .); z− 3

2

〉
0
,

∂tφ[0](0, x) = ‖z− 3
2 ‖−2

0

〈
�1(x, .); z− 3

2

〉
0
,

and for all t ∈ R and almost x ∈ R
3,

〈
�⊥(t, x, .); z− 3

2

〉
0

= 0.

If we expand �⊥ as

�⊥(t, x, z) = φ⊥
r (t, x, z) + φ⊥

0 (t, x)χ(z)z
5
2 log z + φ⊥

1 (t, x)χ(z)z
1
2 + φ⊥

2 (t, x)z− 3
2 ,

we conjecture in the spirit of (3.35) and (3.36), that

‖∇t,xφ
⊥
0 (t, .)‖L2(R3

x)
, ‖∇t,xφ

⊥
1 (t, .)‖L2(R3

x)
, ‖∇t,xφ

⊥
2 (t, .)‖L2(R3

x)
→ 0, | t |→ ∞,

hence

lim|t |→∞ ‖∇t,xφ[0](t, .)− ∇t,xφ2(t, .)‖L2(R3
x)

= 0, (4.30)

that is to say, the more singular part of the gravitational wave is asymptotically given
by the massless graviton. Taking account of (4.27), we also expect that φ⊥

r is asymp-
totically equal to Friedrichs solutions φ±

r of the homogenous equation as t → ±∞.
To summarize, we conjecture that the field in the Ad S5 bulk could be asymptotically
split into a massless graviton localized near the conformal boundary, and a Friedrichs
solution, that is equal to zero on this boundary:

�α(t, x, z) ≈ φ[0](t, x)z− 3
2 + φ±

r (t, x, z), t → ±∞, φ±
r (t, x, 0) = 0.

The proof of this result will need a sharp analysis of the spectral properties of the ham-
iltonian, mainly we would have to establish that its singular continuous spectrum is
empty. Then it would be tempting to develop a complete scattering theory based on the
sequence of operators

(
φ[0], φ−

r

) �−→ �α �−→ (
φ[0], φ+

r

)
.
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A related issue is the characterization of the range of the holographic operator �α . We
know that this space contains all the massless gravitons, and we have conjectured with
(4.30) that it is contained in a set of fields that are asympotically free waves. A precise
characterization will provide a complete description of the dynamics on the conformal
boundary.

Last but not least, we leave open the deep question on the privileged constraints on
the boundary on the Anti-de Sitter universe, among the large family of the boundary
conditions that we have introduced in this work. From the mathematical point of view,
these boundary conditions should yield an empty singular continuous spectrum, and
a range of the holographic operator as large as possible, and accurately characterized.
Another challenging question is the choice of the Hilbert space. It would be interesting
to investigate alternative choices of hilbertian structures, nay to use Pontryagin spaces,
that lead to other boundary conditions. For instance we could use the “cascade model”
introduced in [7]. For the physical point of view, since 1

z has to be considered as an
energy scale E , our boundary constraints intertwine the behaviours of the field at sev-
eral energy scales as E → ∞. Our physical framework is very poor since we deal just
with one linear scalar classical field. We could expect that a rigorous asymptotic analysis
of a more complete model involving N gauge quantum fields, would make more clear
the link between these different scales and bring out a privileged condition.

5. Appendix

This Appendix is devoted to the proof of Lemma 2.2. We use the Bessel formula that
gives the Fourier transform f̂ of a spherically symmetric function f ∈ L1(RN ),

f̂ (ζ ) :=
∫

RN
e−i X.ζ f (X)d X = (2π)

N
2

|ζ| N
2 −1

∫ ∞

0
J N

2 −1(|ζ| r)F(r)r
N
2 dr, F(|X|) := f (X),

to get:

�0(Z) = 1

8π3 |Z|2
∫ ∞

0
J2(z |Z|) z3

(z2 − μ0)(z2 − μ1)(z2 − μ2)
dz.

We write

1

z2 − μ j
= 2

∫ ∞

0
e−(z2−μ j )t2

j t j dt j ,

to obtain

�0(Z)= 1

π3 |Z|2
∫ ∞

0

∫ ∞

0

∫ ∞

0
eμ0t2

0 +μ1t2
1 +μ2t2

2

×
(∫ ∞

0
J2(z |Z|)e−z2(t2

0 +t2
1 +t2

2 )z3dz

)
t0t1t2dt0dt1dt2.

We recall formula (10.22.51) of [16]:

∫ ∞

0
J2(z |Z|)e−z2 p2

z3dz = |Z|2
8p6 e

− |Z|2
4p2 ,
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and by replacing it in the previous expression, we deduce that

�0(Z) = 1

8π3

∫ ∞

0

∫ ∞

0

∫ ∞

0
e
μ0t2

0 +μ1t2
1 +μ2t2

2 − |Z |2
4(t20 +t21 +t22 )

t0t1t2
(t2

0 + t2
1 + t2

2 )
3

dt0dt1dt2.

We use the spherical coordinates of R
3, t0 = ρ cosϕ sin θ, t1 = ρ sin ϕ sin θ, t2 =

ρ cos θ to get

�0(Z)

= 1

8π3

∫ ∞

0

(∫ π
2

0

(∫ π
2

0
eρ

2 sin2 θ(μ0 cos2 ϕ+μ1 sin2 ϕ) cosϕ sin ϕdϕ

)
eμ2ρ

2 cos2 θ sin3 θ cos θdθ

)
e
− |Z |2

4ρ2 dρ

ρ

= 1

16π3(μ0 − μ1)

∫ ∞

0

(∫ π
2

0

[
eρ

2(μ0 sin2 θ+μ2 cos2 θ) − eρ
2(μ1 sin2 θ+μ2 cos2 θ)

]
cos θ sin θdθ

)
e
− |Z |2

4ρ2 dρ

ρ3

= 1

32π3(μ0 − μ1)(μ1 − μ2)

∫ ∞

0
e
μ1ρ

2− |Z |2
4ρ2 dρ

ρ5
+

1

32π3(μ1 − μ2)(μ2 − μ0)

∫ ∞

0
e
μ2ρ

2− |Z |2
4ρ2 dρ

ρ5

+
1

32π3(μ2 − μ0)(μ0 − μ1)

∫ ∞

0
e
μ0ρ

2− |Z |2
4ρ2 dρ

ρ5
.

We can express the modified Bessel function K2 by formula (10.32.10) of [16] to get

∫ ∞

0
e
μ jρ

2− |Z |2
4ρ2 dρ

ρ5
= −8μ j

|Z|2 K2(
√−μ j |Z|),

therefore we obtain the expression of �0:

�0(Z) = − 1

4π3 |Z|2
[

μ1

(μ0 − μ1)(μ1 − μ2)
K2(

√−μ1 |Z|)

+
μ2

(μ1 − μ2)(μ2 − μ0)
K2(

√−μ2 |Z|)

+
μ0

(μ2 − μ0)(μ0 − μ1)
K2(

√−μ0 |Z|)
]
.

We directly obtain the expression of ϕ j with a change of variable in formula (II, 3 ; 20)
of [18]:

ϕ j (Z) = − μ j

8π3 |Z|2 K2(
√−μ j |Z|). (5.1)

We know that K2(z) is an analytic function on the surface of the logarithm, and for z > 0
we have the following asymptotics (see [16], formulae (10.25.3):

K2(z) ∼
√
π

2z
e−z, z → ∞, K2(z) ∼ 2

z2 , z → 0+.

We deduce that�0 and ϕ j are in L1(R6). To derive the asymptotic forms near zero, we
use formula (10.31.1) of [16] that allows to establish that for z > 0:

K2(z) = 2

z2 − 1

2
− z2

8
log z + z2 F(z2) + z4G(z2) log z, (5.2)
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where F and G are entire and if γ denotes Euler’s constant, we have:

F(0) = 4 log 2 + 3 − 4γ

32
. (5.3)

Equation (2.20) follows from (5.1) and (5.2) with

Fj (Z) = (1 − χ(Z))ϕ j (Z)

+ χ(Z)

(
− μ2

j

128π3 log(−μ j ) +
μ2

j

8π3 F(−μ j |Z|2)

−μ
3
j |Z|2
8π3 G(−μ j |Z|2) log(−μ j |Z|)

)
.

Since (1 − χ)ϕ j ∈ H∞(R6) by elliptic regularity and |Z |2 log(|Z |) ∈ H4
loc(R

6) we
conclude that Fj ∈ H4(R6), and (5.3) gives (2.22). Finally we have

�0 = 2

(
ϕ1

(μ0 − μ1)(μ1 − μ2)
+

ϕ2

(μ1 − μ2)(μ2 − μ0)
+

ϕ0

(μ2 − μ0)(μ0 − μ1)

)
,

hence (2.21) follows from (2.20) with

G0 = 2

(
F1

(μ0 − μ1)(μ1 − μ2)
+

F2

(μ1 − μ2)(μ2 − μ0)
+

F0

(μ2 − μ0)(μ0 − μ1)

)
,

and with this expression of G0, (2.23) follows from (2.22). At last the link between
(Ur , u0, u1, u2) and (Vr , v0, v1, v2) is easily deduced from (2.20) and (2.21) via some
tedious computations:

v2 = 1

4π3 (u1 + u2), v1 = 1

16π3 (μ1u1 + μ2u2),

v0 = 1

64π3 (2u0 − μ2
1u1 − μ2

2u2), Vr = Ur + u0G0 + u1 F1 + u2 F2, (5.4)

u1 = 16π3v1 − 4π3μ2v2

μ1 − μ2
, u2 = 16π3v1 − 4π3μ1v2

μ2 − μ1
,

u0 = 32π3v0 + 8π3(μ1 + μ2)v1 − 2π3μ1μ2v2,

ur = vr +
4v1(μ1+μ2)−v2μ1μ2

16
χ(Z) log(|Z|)− 16π3v1 − 4π3μ2v2

μ1−μ2
F1

−16π3v1−4π3μ1v2

μ2 − μ1
F2, (5.5)

Ur = Vr −
(

32π3v0 + 8π3(μ1 + μ2)v1 − 2π3μ1μ2v2

)
G0

−16π3v1 − 4π3μ2v2

μ1 − μ2
F1 − 16π3v1 − 4π3μ1v2

μ2 − μ1
F2.

These expressions show that the coordinates u1, u2, u0 depend on u, μ1, μ2, but are
independent of the choice of μ0. Furthermore, since χ(Z) log(|Z |) ∈ H3−ε(R6) and
Fj , G0 ∈ H4(R6), we see that the ‖.‖Hk -norms and the |.|k-norms are equivalent.
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