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ABSTRACT. - We consider a spherical star, stationary in the past,
collapsing to a Black-Hole in the future. Assuming the quantum state

of a Klein-Gordon field to be the Fock vacuum in the past, we prove that
an observer at rest in the Schwarzschild coordinates, will measure a thermal
state with the Hawking temperature, at the last time of the gravitational
collapse. @ Elsevier, Paris

RESUME. - On considere une etoile spherique, stationnaire dans Ie passe,
s’ effondrant en un trou noir dans Ie futur. Supposant qu’un champ quantique
de Klein-Gordon est dans l’état du vide de Fock dans Ie passe, on prouve
qu’un observateur au repos en coordonnees de Schwarzschild, mesurera, en
temps infini, un etat thermal a la temperature Hawking. @ Elsevier, Paris

I. INTRODUCTION

The aim of this paper is to give a rigorous mathematical proof of the
famous result by S. Hawking [21], on the emergence of a thermal state at
the last moment of a gravitational collapse. In a previous paper [6], we
proved that an observer infalling across the Black-Hole horizon, measures
a thermal radiation of particules outgoing from the Black-Hole to infinity.
In the present work we consider the case of an observer at rest with respect
to the Schwarzschild coordinates.
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42 A. BACHELOT

We recall that the space-time exterior of a spherical star with mass

M &#x3E; 0, and radius z(t) in the Regge-Wheeler coordinate, stationary in the
past, collapsing to a Black-Hole in the future, is described in Schwarzschild
coordinates by the globally hyperbolic manifold

Denoting

the surface gravity, z satisfies (see [5])

We consider the hyperbolic mixed problem for the Klein-Gordon equation
of mass m &#x3E; 0, in 

which, in the Schwarzschild metric (1.2), takes the form:

where we have put:

We proved in [5] that the solution W ( t, .) = U(t,, s)~ is determined by a
propagator s) which is strongly continuous on the family of Hilbert
spaces ~l(t) of finite energy fields:

Annales de l’Institut Henri Poincaré - Physique theorique



43THE HAWKING EFFECT

Here is the selfadjoint operator on the space Lt :

with domain

and, in this paper, denotes the closure of the domain D(K) of an
operator K on a Hilbert space H for the norm ~ tK(-) 
We now give a brief formal description of the Hawking effect. The

fundamental space for the Quantum Field Theory turns out to be:

The quantum vacuum state at time t is defined by the generating functional

More generally, a thermal quantum state with temperature () &#x3E; 0 with

respect to a hamiltonian H &#x3E; 0 is defined (see e.g. [9]) by the generating
functional

The ground quantum state in M is defined by the functionals ~~

Since the star is stationary in the past, U(0, t) is unitary for t  0, and the

ground state is just the vacuum state in the past:

In order to investigate the structure of the ground state in the future, we take
~o in a dense subspace 7) of [C~(]~(0),oo[~x6~)~. The fundamental
problem is then to evaluate

Vol. 70, nO 1-1999.



44 A. BACHELOT

To make clear the origin of the Hawking effect, we now explain this
phenomenon on a "toy model" where all the calculations can be explicitely
made. This model is defined by

Note that this very simple model is physically relevant: it describes the
dynamics of the radial component of the first mode of the electromagnetic
tensor field on the Schwarzschild metric [2]. We denote U* (t, s) the
propagator associated with this mixed hyperbolic problem, and we introduce
the operators :

with domains

We take :

and we have to study:

First there exist unique f~, f~ E Co (~ - A, such that:

where n=- and n~ play the role of wave operators by splitting the field
in leftgoing and rightgoing parts:

On the one hand, we have for T &#x3E; 0:

Annales de l’Institut Henri Poincare - Physique theorique



45THE HAWKING EFFECT

hence for ~ &#x3E; 0:

On the other hand we easily check (see [5]), that for T &#x3E; 0 large enough:

where is defined by:

Now we specify function z(t) for t, large enough, by choosing:

where is the local solution of:

Then we have:

and an explicit calculation by Fourier transform gives the fundamental
estimate:

We immediately conclude from (1.17), (1.18) and (1.19) that:

Vol. 70, n° 1-1999.



46 A. BACHELOT

The Hawking effect is expressed by the second term which is characteristic
of a "rightgoing" thermal radiation at temperature 2~ .

In the case of the Klein-Gordon field outside a collapsing star, the

situation is much more complicated because of the space curvature, the
mass of the field, and the perturbation (( t) in the collapse function z (1.5).
But the origine of the Hawking radiation is essentialy the same, and with
many subtle technical steps, of Scattering Theory type, the problem is

reduced to the previous one. Our proof is based on a sharp study of
the backward propagator, and we use some results from our previous
works: the functional framework for quantum fields and the study of the
quantum state near the Black-Hole horizon [6], the analysis of the infinite
Doppler effect [5], the modified wave operators for a long range type
interaction [4], the analyticity of the gravitational potential [7]. We briefly
describe our approach. To investigate (1.16) we consider the part of the
field far from the star, ( 1 - and the part of the field near
the star, T)~, where x is a smooth cut-off function equal to 1 for

r*  ~, and equal to 0 for r* &#x3E; 1. Firstly, thanks to the hyperbolicity,
(1 - ~)t/(0,T)~ = (1 - x)U(-T)~° where is the unitary group
associated with the Klein-Gordon equation on the whole Schwarzschild
space-time. Then we can use the scattering theory for an eternal black-hole
developped in [4] : we introduce formally the Wave Operator at infinity:

where U~ (t) is the Dollard modified propagator associated with the

Klein-Gordon equation in the Minkowski space-time ( [4] ) :

Then we prove that:

The second step, the estimate T ) ~° ~ ~ x 2 ~°~, is much

more delicate. We remark that is entirely determined by
the field equation, the boundary condition, a causality condition on

the support of and the trace of on

"1 = {(~7~ = 1 - x 5~}. Therefore we investigate the
Hyperbolic Mixed Characteristic Problem where u is solution of (1.6) in

Annales de l’Institut Henri Poincaré - Physique theorique
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(9= {(~,~); (t~ ~) E ~)  ~* ~ 1-~}, =0

in (9 for t large enough, = 0, and u = cp given in Using
the tools of [6], we show that the == = 0)) is

well defined from I~l (~y) into ~~(0). The next crucial point is that

To get cp- we construct the Black-Hole Horizon Wave Operators

where UBH(t) is the group associated with the asymptotic dynamics at

the horizon:

The strong asymptotic completeness of these operators is a consequence

of the properties of analyticity of the map r* r-+ r established in [7] and

we have

Then we reach the key point of the proof of the Hawking effect: this is

the following fundamental identity:

From this we conclude that

Vol. 70, n ° 1-1999.



48 A. BACHELOT

This is the main mathematical result of this work (Theorem 111.3). Therefore,
taking account of (1.15), and noting that:

(1.30) means that an observer at rest in the Schwarzschild coordinates
measures as T 2014~ +00, a thermal radiation at temperature of particules
outgoing from the Black-Hole the infinity. It is the exact corroboration of
S. Hawking’s analysis [21] (among a huge litterature, see e.g. Candelas [10],
Fredenhagen und Haag [ 17], Gibbons and Hawking [ 19], Sewell [27],
[28], Unruh [29], Wald [30], York [32], and see also the references in
the classic monographs on quantum field theory in curved space-time by
Birrel and Davies [8], DeWitt [ 12], Fulling [ 18], Grib, Mamayev and
Mostepanenko [20], Wald [31 ], as well as the volume [ 1 ]).
The paper is organized as follows. Taking advantage of the spherical

invariance, we can reduce the problem to solving an equation in one space
dimension, which we investigate in the second part. Then we get the crucial
asymptotic behaviour for the three dimensional problem in the third part,
and we prove the Hawking effect in part 4.

II. ONE DIMENSIONAL COLLAPSE

We consider the hyperbolic mixed problem:

where the function z satisfies (1.5) and the potential V is such that there
exist m&#x3E;0,~eR,6-&#x3E;0 with

and ~ &#x3E; 0 is given by (1.5). Given V E V &#x3E; 0, and an interval
1 c R, we introduce the positive selfadjoint operator on L2(I) with
dense domain D(Hyj), defined by:

Annales de l’Institut Henri Poincare - Physique theorique
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We recall that [D(H~)] is the closure of for the norm

and we define: the Hilbert spaces

and the group unitary on and 

For simplicity we put:

We recall (see [5]) that the mixed problem (11.1), (11.2) is solved by a
propagator 

which is well defined and strongly continuous on the family ~(V,~). We
denote the Sobolev space defined as the completion of for

the norm:

Eventually we shall need the subspace:

This space is in fact sufficiently large:

PROPOSITION 11.1. - For any potential V &#x3E; 0, V e C°° U L~(R), DV is
a dense subspace q/’ ~(V, R) n 7-~ ( V, R).

70, n ° 1-1999.



50 A. BACHELOT

In order to investigate the asymptotic behaviour of the dynamics 
we choose a cut-off function such that:

and we introduce the Wave Operators

where, given some intervals I c J and cp E ~p denotes

the operator

The scattering of classic fields is described in our functional framework

by the following:

THEOREM II.2. - Given a potential Y satisfving assumption (II.3), for any
F ~t ( f , p) E F(x) = 0 for ~z;  R, x E lR, the strong limits 

exist and are independent of x satisfying (II.11 ). Moreover
we have:

Now we can state the key result of this part:

Annales de l’Institut Henri Physique - theorique
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THEOREM 11.3. - Given a potential V satisfying assumption (11.3), for all
F in Dy we have:

Remark 11.4. - We note that this limit does not depend on the function z.

Proof of Proposition 11.1. - Since V E we have c

for any n E N, whence by interpolation

Then Py is a subspace of Moreover, since

we have

and it is also a subset of ~-L 2 ( V, R). On the other hand we have:

thus:

Now we consider the space completion of in the

graph norm

For s == 1 2, 1 4, 0, -1 4, let g in [[D(HsV,R)]] be such that

Then:

Since V is non negative and g E we conclude that g = 0, hence
is dense in and therefore also in 

Q. E. D.

Vol. 70, n° 1-1999.
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Proof of Theorem 11.2. - Given two densely defined self-adjoint operators
K1 and K2 on L2(I) we define formally the wave operator

where is the projector onto the absolutely continuous subspace of
K. We recall that if f E D(Ki), then E and we have
the intertwining relation

We fix R E R. First we note that

is of finite rank and thus trace class. Hence the Birman-Kuroda theorem

([26], theorem XI.9) and the invariance principle ([26], theorem XI.11)
yield that the wave operators

exist and are complete. Secondly, we have

and since the potential V is exponentially decreasing as x -+ -00
Theorem XI.21 in [26] guarantees that is
trace class; hence the wave operators

exist and are complete. Now, since V is positive, the eigenvalues of 
are strictly positive if they exist. But V satisfies the hypothesis of the
Kato-Agmon-Simon theorem ([26], theorem XIII.58) so the point spectrum
is empty. Moreover since V is integrable near -oo, has no singular
spectrum as a consequence of the R. Carmona theorem [ 11 ] . Finally we
conclude that

Annales de l’Institut Henri Poincaré - Physique theorique
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is an isometry from into Now given F =t Dv
we denote

and we have:

with

We denote:

hence we get 

Moreover, since and have purely absolutely continuous
spectrum, we have:

Since R is arbitrary, (11.28) with s = 0,1 gives:

Vol. 70, n ° 1-1999.
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Then we deduce that for s = 0,1 we have

Thus, by interpolation, (11.32) is still valid for s = 4 , 2 . To complete the
proof of the existence of the strong limit the following result
is required:

We denote

Since

we get

As previously we have

for s = -1, 0, and consequently also for s = - 4 . On the other hand
Lemma II.8 of [6] implies:

Annales de l’lnstitut Henri Poincare - Physique " theorique "
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and by (11.29) we have:

Therefore (11.33) is established, and we conclude that the strong limit (11.13)
exists and does not depend on ~ since

To prove the existence of we first see as consequence of (11.28),
(11.29), (11.30), that: 

’

Then we show:

We denote

Since

we get

As previously we have

1-1999.
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At last, thanks to (11.29) and the Sobolev embedding:

we have for all x E R:

Since Yx E L2 we deduce that

hence (11.36) is established.

On the other hand, since is of finite rank, and all
these operators have absolutely continuous spectrum, the Kuroda-Birman
theorem assures that

is an isometry from L2(~) onto LZ(~) and more generally from

onto Then putting

we have:

Now we prove that

Annades de l’Institut Henri Poincaré - Physique theorique
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Since this result is true 0, it is sufficient to consider the case s = 2 .
A direct calculation gives:

Because e±itH1 20,Rh±0,R and d dx(e±itH1 20,]-~,1]h±0,]-~,12]) are bounded in J?B
the Sobolev imbedding (11.62), and the weak convergence to zero of

e~2t°~~ ~~ ho ~ prove that the last term of (11.44) tends to zero, hence (11.43)
is a consequence of (11.42), and we conclude that the strong limit 
exists, does not depend on x, and

hence the wave operators do not depend on cut-off function x. Now to
prove (11.15) we remark that the definition of entails:

To establish (11.14) we make use of (11.15) to get:

To show (11.16) we note that (11.15) and (11.17) imply

and we also have

Vol. 70, n ° 1-1999.
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whence:

At last we evaluate:

Annales de l’Institut Henri Poincaré - Physique theorique
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The existence of the isometry is established in the same

manner.

Q. E. D.
To establish Theorem II.3 we write:

The above description, in terms of the Wave Operators of scattering
phenomena induced at infinity by an eternal Black-Hole, allows to tackle
the study of the last term, ( 1 - At present, we need to

analyse very sharply the influence of the gravitational collapse expressed
by the term 

PROPOSITION 11.5. 2014 Given a potential V satisfying assumption (11.3), for
all F in DY we have:

The proof of this Propostion needs several Lemmas, technically delicate.

LEMMA 11.6. - Given (/? E cp( t) = 0 for t &#x3E; there ’ exists a

unique ’ solution u of

Vol. 70, n ° 1-1999.
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such that there exists v E CO H1 n C1 L2 satisfying

Proof of Lemma 11.6. - To prove the uniqueness, we consider a solution
u for ~p == 0, and we put u(t, ~) _ for z(t)  x  2014~+1, and

== 0 for x &#x3E; -t + 1. Then ic is a solution of (11.1), (11.2) and there
exists v E satisfying u(t, ~) = 
for t E z(t)  x. Thus there exists F E such that

Since = 0 for t &#x3E; Theorem 11-1 of [GravColl] implies F = 0,
hence u = 0.

To prove the existence of u, given cp E we put

and we solve the hyperbolic characteristic problem:

It is convenient to introduce the characteristic coordinates

Then w(t, ~) is a continuous solution of (11.53), (11.54), (11.55) iff

W(X, Y) === w(t,x) is a continuous solution of

l’Institut Henri Poincaré - Physique theorique
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The integral equation (11.57) is easily solved by the Picard method putting

Since cp and V are bounded we have:

hence

is a solution of (11.57), (11.58), moreover, W(X, Y) E 
since V E Now we put

where

We note that

Then == is a finite energy solution of (11.1), (11.2),
(11.50), (11.51), and the Lemma is established for regular ~p. To treat the

case ~p E we remark that the relation

implies

Vol. 70, n ° 1-1999.
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Hence using the energy estimate for the propagator U~.(s.t,):

At last we remark that the Sobolev embedding

implies

Then we conclude by (11.61), (11.63), and a standard argument of density
and continuity.

Q.E.D.
Given x satisfying (11.11), we introduce the operator Py defined for

by:

where u is given by Lemma 11.6.
We shall establish two main results. The first one, Lemma 11.13, assures

that PY is bounded from to 7~ (V, 0). The second one, Lemma 11.14,
gives a fine analysis of the asymptotic behaviour of with respect
to T, where = cp(t - T).

LEMMA 11.7. - There exists C &#x3E; 0 such that for any cp E = 0

for t we have:

Proof of Lemma 11.7. - We suppose ~ E is compactly supported
1, j + 1]. With the notations of the proof of the previous Lemma

we have = j + 1 and:

Annales de l’Institut Henri Poincaré - Physique theorique
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Since is supported in [2014~4 2014 ~], Lemma 11-11 of [6] implies

where C &#x3E; 0 is independent of cp~ and j E N. On the other hand, since
(~ 2014 l)7v(0~ + is supported in [~(0),3], we get by Lemma 11-8
of [6]:

We remark that

and

Then we conclude using (11.60) that

Now given ~p E oo[) we define a cut off function 9:

and we put:

Since

(11.65) is a consequence of (11.71).
Q.E.D.

The following Lemma gives some useful characterizations of the norm
of We denote / = the Fourier transform of tempered
distributions on R:

Vol. 70, n° 1-1999.
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LEMMA II.B. - Given V E L°° (IR), V 2: 0, R E IR, and s &#x3E; -~,
is a subspace of [D(HsV,[R,~[)] and for 03C6 E we

have:

and there exists C &#x3E; 0 such that

and for any 03C6 E C~0 (]a, b[), R ::; a  b, we have:

~ 
 s any bounded interval , oo[ there ’

exists Ca,b ’ such that

Proof of Lemma 11.8. - Given ~ E we put

Annales de l’Institut Henri Poincaré - Physique theorique
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Since 2014P is an isometry from into Lz(~) such that:

we get that 4~.~~ is an isometry from L~(~R; oo[) into LZ(~) satisfying

Thus we deduce that ~ E iff

then is a subspace of if 4s + 2 &#x3E; -1 and

(11.74 is proved, moreover (11.75) holds for 4s + 1 &#x3E; -1. To prove (11.76),
we note that:

To get (11.77) we deduce from (11.76) that:

Now on the one hand we have:

Vol. 70, n° 1-1999.
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hence Heinz’s Theorem [22] entails for s ~ 0:

On the other hand we have for ~/~ E C~(]a,6[):

Hence (11.78) is proved for s = 2 and the case 0  s  2 follows by
interpolation. Eventually, since:

the Heinz theorem gives for 9 ~ 0:

therefore (11.78) holds for -   8  0.

Q. E. D.
Now we derive an improvement of Lemma 11.7 for V = 0.

LEMMA 11.9. - There exists C &#x3E; 0 such that for any ~p E = 0

for t &#x3E; we have:

Proof of Lemma 11.9. - We choose 6’o E = 0 for t  1 and
= 1 for t &#x3E; 2. For R &#x3E; -1 2z ~~~ we put:

We consider:

By (11.65) we get:

de l’Institut Henri Poincaré - Physique theorique
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Now we denote:

According to [5] an explicit calculation gives:

where the function T is implicitly defined by:

and we have the following asymptotic behaviours:

So we infer that:

where is the solution of:

We easily show that a is an increasing function of R that satisfies:

Because of (11.82) we have

Vol. 70, n 
° 1-1999.
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thus, using (11.77) we get:

On the one hand we put:

then we have:

de l’Institut Henri Poincaré - Physique theorique
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and we evaluate:

where :

We put:

and we get:

On the other hand we put S = + and we get

with

We choose R &#x3E; 0 large enough to assure that and 1~2 (R) are finite
and the result follows from (11.80), (11.91), (11.92) and (11.93).

Q.E.D.

Vo).70,n°)-t999.



70 A. BACHELOT

For cp E and T &#x3E; 0 we put:

LEMMA 11.10. - For any cp E ~p(t~ = 0 for t &#x3E; we have:

Proof of Lemma 11.10. - Thanks to Lemma 11.9 we may assume that:

We denote:

We choose 9~ E as in the previous Lemma and we consider:

B y (11.65) we get:

Now we denote:

According to [5] an explicit calculation gives:

Annales de l’Institut Henri Poincaré - Physique - theorique
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where we have the following asymptotic behaviours:

and we have:

with

We introduce

We have :

On the one hand, the Sobolev embedding implies that is bounded,

whence

and since is compactly supported in [0(e ~~),0] we have:

On the other hand we obtain directly

Vol. 70, n° 1-1999.



72 A. BACHELOT

hence we deduce that

and by Lemma II.8 of [6] we conclude that

Now, using (11.74) we evaluate:

where

We recall that according to Lemma 11.6 of [6] we have:

Since tends to (/? in as R - T tends to -oo, (11.108) implies
that for R fixed:

FR_T(~~F~_T(-~~ converges in We conclude by the
nonstationnary phase theorem that for R fixed

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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We write:

so, taking account of (11.97), (11.105) and (11.110), we get:

hence:

Thanks to (11.98) we have

thus using (11.97), (11.105) and (11.110) again, we deduce:

hence (11.95) is established.

As cab be inferred from Proposition 11.8, (11.95), (11.97), all that is now
required to obtain (11.96), is to prove that, given R, fR,T tends to 0 in the
sense of distributions as T 2014~ oo. We introduce:

Vol. 70, n° 1-1999.
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Obviously:

We remark that:

Hence, noting that and fR,T are compactly supported uniformly with
respect to T, we deduce from (11.104) that

Q.E.D.
LEMMA 11.11. - For any /? E cp(t) = 0 for t &#x3E; we have:

Proof of Lemma 11.11. - We get from (11.78) and (11.97):

Since

the Heinz theorem implies:

where is given by (11.103). Hence we have:

l’Institut Henri Poincaré - Physique theorique
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where FR-T is defined by (11.107). By the dominated convergence theorem
and (11.110) we deduce that

We apply Lemma 11.8 of [6] with a = 1:

and we get from (11.118) and (11.119) that

The Heinz theorem implies also:

Hence we have:

hence we conclude by (11.114) that:

Finally (11.115) follows from (11.121) and (11.120), and (11.116) follows
from (11.115) and (11.96).

Q.E.D.

LEMMA 11.12. - There exists C &#x3E; 0 such that for any cp E 

cp( t) = 0 for t &#x3E; we have:

Vol. 70, n ° 1-1999.
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Proof of Lemma 11.12. - By Lemma 11.6, for ~p~ E Cü(]j - 1J + 1[)
there exists E + 1) supported in [-~ -~’ + 4], such that:

We write:

Lemma 11.11 of [6] gives:

and Lemma 11.8 of [6] gives:

We denote uv the solution of Lemma 11.6 with data CPj and we put:

We have the energy estimate 

and since:

we get, using (11.3):

Annales de l’Institut Henri Poincaré - Physique theorique
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We remark that:

hence we deduce by Gronwall’s inequality that

and we obtain:

To estimate I3 we use the Duhamel formula:

Since Uo(s,j + is supported in [~), -s + 5], Lemma 11.11 of [6]
implies:

We introduce 8~ solution of:

By (1.5) we have:

For j &#x3E; ~(3 - z(0)), we have:

where

According to (11.98) we have:

1-1999.
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We deduce that:

and since f ~ is supported in [0(e ~),0], we get:

and with (11.3)

For s E + 1] we obtain by (11.3), (11.130), Lemma 11.12 and

Proposition 11.1 of [6] :

We conclude from (11.133), (11.132) and (11.129) that:

I4 is estimated using Lemma II.8 of [6] and the Duhamel formula again in
the following mannerytnhfefeudd n sqpp-:

Therefore we conclude from (11.128), (11.134), (11.135), that

and (11.122) follows from the expansion (11.72), (11.73), and (11.136).
Q. E. D.

Now we derive the strong improvement of Lemma 11.7, by establishing
the continuity of PY from into 7~(V,0).

Annades de l’Institut Henri Poincaré - Physique theorique
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LEMMA II.13 . - There exists Cv &#x3E; 0 such that for any ~p E 

cp( t) = 0 for t &#x3E; we have:

Proof of Lemma 11.13. - (11.137) is is a direct consequence of (11.122)
and (11.79).

Q.E.D.
The main result on the asymptotic behaviour of is given by

the following:

LEMMA 11.14. - For any cp E cp(t) = 0 for t we have:

Proof of Lemma 11.14. - By (11.122) we have:

We apply the dominated convergence theorem and we get

Thus (11.138) and (11.139) are consequences of (11.115) and (11.116)
respectively.

Q.E.D.
Given F E Dv, F(x) = 0 for x  R, we denote for T &#x3E; 0 large enough:

~p~ and cp_ satisfy:
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LEMMA 11.15.

Proof of Lemma 11.15. - We denote

so we remark that

Given s &#x3E; 0 we have:

Now we remark that u and u- are solution of a (wave) equation, hyperbolic
with respect to .c. Hence, using the fact that:

and for any xo fixed in R

we conclude that u(t, ~r) is the unique solution of:
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The standard L2 and H1 estimates for the one-dimensional wave equation,
and the hypothesis on potential V assure that for x  7?,:

Using Gronwall’s inequality, (11.150) gives:

hence, with (11.151) we obtain:

and the Sobolev embedding entails:

(11.148) and (11.152) give for s, T &#x3E; 1 - R, s &#x3E; 0:

and since by Theorem 11.2 we have:

we conclude that:

Now, using the classic energy estimate for equation:
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and taking T &#x3E; R - 1, we can write:

where

Since Theorem 11.2 assures that:

we deduce that:

Then (11.144) follows from (11.154) and (11.155).

LEMMA 11.16. - We have:
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Proof of Lemma 11.16. - By Lemmas 11.13 and 11.15 we have:

hence ’ the result is a consequence of Lemma  11.14.

11.5. - We have 

where 03C6T is given by (11.140). On the other hand (11.15) and (11.141) imply
the existence of f E f(t) == 0 for G large enough, such that:

We deduce that:

therefore the Proposition follows from Lemma 11.16.

Q. E. D.

Proof of Theorem 11.3. - We have:

According to Theorem II.2
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therefore:

and for e E [0, i] we have:

We evaluate:

Now given a sequence 0 in L2 ((~) - weal~ - * as n --7 oo, un

compactly supported in [~(0),~], we have for any A &#x3E; 0:

Hence we get that 0 in ~([~(0),oo[) for 0  c  ~ and we
conclude by (11.47) and (11.161) that b (T ) ~ 0. Finally, (11.20) follows
from (11.160) and (11.46).

Q. E. D.

III. CLASSICAL FIELDS

We recall that the solution of the 4-D hyperbolic mixed problem (1.6),
(I.7), (1.8), is given by the propagator U (t, s) which is strongly continuous
on the family of finite energy spaces defined by (1.9). Moreover
denoting £’ the space of compactly supported distributions on x 33,
Proposition 111.1 of [6] assures that U ( t, s) is strongly continuous from
~C(s) n £’ into ~C 2 (t) f1 ~’.
Now we consider the Klein-Gordon equation on the whole Schwarzschild

space-time:
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The solution of the Cauchy problem is given by the group 

t(~(t), at~(t)) = ~(~(~(0),9~(0)), which is unitary on the Hilbert
space of the finite energy data:

and the Hilbert space of the quantum field theory:

where is the selfadjoint operator on the space L~:

with domain

We shall use a dense subspace of these spaces:

where l E 1B1, m E 7L, ~ rrL (  l ~ is the spherical harmonics basis of
L2(S2).

PROPOSITION III.1. - Ds is a dense subspace of n 

We compare the fields near the Black-Hole, with the plane wave solutions
of

where is the operator

selfadjoint on the Hilbert space
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with domain

The solutions of (111.8) are given by a group UBH(t) unitary on the Hilbert
spaces:

To investigate the behaviour of fields near the horizon we choose a cut-off
function ~(r~) satisfying:

and we introduce the Black-Hole Horizon Wave Operators

where:

In fact, we have to distinguish between the fields, outgoing from the Black-
Hole to infinity (-), and the fields infalling into the Black-Hole from infinity
(+). Then we put:

Here 9~/ is well defined by the spectral theory although is not
a space of distributions for some s. As regards the asymptotic behaviour
of fields at infinity, since the Schwarzschild metric is asymptotically flat,
we compare the fields near space-like infinity, with scalar fields in the

Minkowski space-time, solutions of the Klein-Gordon equation:

hence we introduce the free hamiltonian:
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with domain:

and the Hilbert spaces:

The solutions of (111.17) are given by the free propagator

which is a unitary group on these spaces. Nevertheless, according to [4],
because the term 20142M?r~r~ in (111.1) is long range type, we must
introduce the Dollard modified propagator, which is unitary on and

1

Here for f E we have:

and for t E IR*

We introduce an identifying operator 600 putting:

and we define the Flat Infinity Wave Operators:

The scattering of classical fields on the whole Schwarzschild space-time
is described by the following:
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THEOREM III.2. - The strong limits (III.15) and (III.26) exist for any 03A6
in and do not depend on the function x satisfying (III.14). Moreover
03A9±BH EB 03A9±~ is an isometry from onto

1 1.1.
EB ?-~~ and can be extended as an isometry from 2 onto EB ~-C~

satisfying for any t E IR:

Furthermore if 03A6 E Ds we have:

Now we can state the fundamental result concerning the backward

propagator !7(0,T):
THEOREM III.3 (Main Result). - For in Ds we have:

Remark 111.4. - We note that the limit (111.29) does not depend of the
history of the collapse of the star, described by the function z. It is a "a
la Wheeler", "No Hair type" result.

Proof of Proposition 111.1. - We shall use the basis of spherical harmonics
of m E ! l~. For f E we define:

with

We have:

with:
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Obviously this potential satisfies assumption (11.3). Now we have:

and for

we have:

At last we remark that:

Since we have shown in the proof of Proposition 11.1 that 
is dense in = -~0,~~ we conclude that Ds is dense

in ~CS f1 ?~s 2 .
Q.E.D.

Proof of Theorem 111.2. - Lemma IV.1 in [5] states that EB 03A9±~
exists and is an isometry from ~s onto ~‘~C~ EB Moreover Theorem 1

in [4] assures the intertwining relation (111.27). We deduce from (111.27)
that SZ~ EÐ H~ can be extended as an isometry from onto Hi EÐ 
In fact it will be useful to recover these results in a manner which makes

explicit the relation between the wave operators of the three-dimensional
and the one-dimensional problems:

LEMMA 111.5. - For Fl E have:

Proof of Lemma 111.5. - We deduce from (111.30) that:
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Thus :

We easily check that is equibounded o with respect to
t on x 0 hence , we get:

Now given f E we put F~ =t ( f , ~ f ’ ) , and we verify that:

Therefore (111.33) is a consequence of (11.15).

Q. E. D.
We could get a part of the intertwining relation (111.27) noting that:

At last for 03A6 given by (111.32) we infer from (111.33) and (II.16):

Q.E.D.
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Proof of Theorem 111.3. - We consider

We have:

Since:

we deduce that

Theorem 11.3 implies:

For I&#x3E; 00 E we put:

where

According to Lemma IV.2 in [5], ~ is a well defined operator, which is
unitary from and since the intertwining relation

1

holds, this wave operator is unitary from onto ?~ 2 (0). Now we remark
that:
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Thus we deduce that:

Therefore we get:

On the other hand (111.35) implies

Now (111.29) follows from (111.36), (111.37), and (111.38).

Q. E. D.

IV. THE HAWKING EFFECT

We describe the emergence of the Hawking state in two frameworks
of the Quantum Field Theory: the point of view of the quantization at

time t according to [6] or [14], and the approach of the algebras of local
observables on in the spirit of [ 13] and [ 17] . Then the Hawking effect
is a direct consequence of the main Theorem III.3.

IV.l. Time Dependent Quantum Fields

We consider a one parameter family of real vector spaces, 
endowed with a skew-symetric, non degenerate, bilinear form, ~(.,.), and
a propagator !7(~), which is a symplectic isomorphism from 
onto 

A Weyl Quantization of (D, cr, U) is a family of maps Pt E
from Dt into the space U(S)) of unitary operators on some

complex Hilbert space .~, satisfying:
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The Quantum Observables Algebra 2t, is the minimal C* - subalgebra in
the space ,C(.~) of bounded linear maps on ~, containing all the operators

In fact, up to a norm-preserving and an involution-preserving
isomorphism, 21 does not depend either on t, or on the choice of the Weyl
Quantization.
A Quantum State w is a positive, normalised, linear form on The

quantum state is characterized at time t by the Generating Functional E~
defined on D~ by:

As a consequence of (IV.3) these functionals satisfy:

Given a quantum state cv defined at time zero by Eo, the fundamental
problem is to describe the quantum state at time t. Thanks to (IV.4) this
quantum problem is reduced to the study of the classical propagator t).
We apply these considerations to the second order evolution equation:

where for any t fixed in R, is a densely defined, selfadjoint operator
on some Hilbert space We assume that the required hypotheses
on the time-dependence of are satisfied so that the propagator s)
associated with this equation, exists and is an isomorphism on a family Dt
of spaces of real Cauchy data, such that:

The Fock quantization is defined for Pt =t Dt by:
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where is the creation operator on the Fock space

Here C~ ~ ~n stands for the n-fold symmetric tensor product of f). The Fock
vacuum state at time t is defined by the functional:

and the thermal state at time t with temperature (9 &#x3E; 0 is defined by the
functional:

These previous tools allow us to define the Fock quantization of a spin-0
field outside the collapsing star, described by (1.10), (1.11), (1.12), putting:

Since the star is stationnary in the past, we define the Ground Quantum
State wo by the Fock vacuum in the past, i.e.:

In the same manner we can construct the quantum fields and quantum states
on the Future Black-Hole Horizon, and on the Asymptotic Minkowski
Space-Time (see [6]).
We investigate the asymptotic behaviour of this state as t tends to infinity,

on the subalgebra of observables generated by D s .
THEOREM Iv.l. - real valued elment of DS. Then we have:
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Proof of Theorem IV.l. - We get by (IV.4), (IV.9), (IV.12) and

Theorem III.3:

IV.2. Hawking State on .M

We construct the Algebra of Local Observables, associated with

the Klein-Gordon equation (1.6) on in a similar way as in [13]. For

P E x C~(A~~) we put:

Following Proposition 111.1 of [6], we have

Then we define ~L(./~t ) as the C* - algebra generated by all the 
where M0 is the Fock quantization (IV.6). The Ground Quantum State on

2t(A~), cvo, is characterized by the functional:

Puting :

the fundamental problem is to evaluate:

In fact, as in [ 17], we consider a sub algebra of observables, generated by
the space of test functions:
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To express our result, we introduce similar operators E on the Future
Black-Hole Horizon, and on the Asymptotic Minkowski Space-Time:

THEOREM IV.2. - Let D~. Then we have:

Proof of Theorem IV.2. - We evaluate:

We have:

where

Now if

we have:
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hence

Then (111.27) and Theorem III.3 give:

Q.E.D.

IV.3. Comments

The physical meaning of Theorem IV.l and Theorem IV.2, is the

following: observers at rest with respect to the Schwarzschild coordinates,
measure at their own infinite proper time, a thermal state at temperature

of particules outgoing from the Black-Hole, to infinity. The asymptotic
state does not depend on the history of the collapse (No Hair result), but
only on the mass of the star; the presence of the wave operators 
H~ is only related to the curvature to the underlying eternal Black-Hole.
We have established in [6] a similar result for an observer falling into the
Black-Hole, across the future horizon.

For simplicity we have considered only the case of a (massive or massless)
scalar field outside a spherical collapsing star, without electric charge, but
our approach, especially the study of the one dimensional collapse in Part
II, could be easily applied to treat various kinds of fields, such as the
electromagnetic tensor field [2], the Dirac field [24], the ~-spin field [25],
in geometrical frameworks associated with charged star or/and space-times
with cosmological constant (De Sitter-Schwarzschild-Reissner-Nordstrom
metrics, see e.g. [3], [19]).

Therefore, we may consider that the emergence of a thermal state with the

Hawking temperature, at the last time of a spherical gravitational collapse,
is at present mathematically well understood, in the framework of semi-
classical approximation (weak quantum fields, fixed classical metric). The
investigation of the back reaction of the Hawking radiation on the metric
(Black-Hole evaporation) is another story.
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