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ABSTRACT. - We prove in the case of the Klein-Gordon quantum field,
the emergence of the Hawking-Unruh state at the future Black-Hole horizon
created by a spherical gravitational collapse.

RESUME. - On prouve l’émergence de Fetat quantique d’Hawking-Unruh
pour un champ de Klein-Gordon, a l’horizon d’un trou noir cree par un
effondrement gravitationnel spherique.

I. INTRODUCTION

The aim of this paper is to give a rigorous mathematical proof of the
famous result by S. Hawking [16], on the emergence of a thermal state at
the last moment of a gravitational collapse. The only mathematical approach
to the quantum states of a Black-Hole-type space-time are due to J. Dimock
and B.S. Kay [ 11 ], [10], and deal with the eternal Schwarzschild Black-
Hole. To get the Hawking effect in the future, these authors assume an ad
hoc quantum state on the past Black-Hole Horizon. In this paper we consider
a spherical star, stationary in the past, and collapsing to a Black-Hole in
the future. The quantum state is defined by the standard Fock vacuum in
the past. Then we prove that this state is thermal near the future Black-
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182 A. BACHELOT

Hole Horizon with the Hawking temperature. This is a consequence of the
infinite Doppler effect caused by the moving star boundary. The effects
of this phenomenon on the scattering of classical fields are studied in [3].
The setting is considerably more complicated than for the asymptotically
flat space-times [9], or for the eternal Black-Hole [2], and we shall see
that the Hawking radiation is associated with a very sharp estimate of the
propagator (Remark 11.4 below). For the sake of simplicity we only consider
scalar fields, but our analysis could be extended to the Dirac field [20].
We recall that the space-time outside a spherical star of mass M &#x3E; 0,

and radius p(t) &#x3E; 2M, is described in Schwarzschild coordinates by the
globally hyperbolic manifold

with the Schwarzschild metric

We introduce the Regge-Wheeler tortoise coordinate r* defined by

and we put

Then, according to [3], if we assume the star to be stationnary in the past,
and collapsing to a black-hole in the future, the natural hypotheses for the
function z are

where x is the surface gravity of the future black-hole horizon:

The Black-Hole Horizon is reached as r* - -cxJ, t - +00, r~ + t ==

Cst. &#x3E; 0.

Annales de l’Institut Henri Poincaré - Physique théorique



183QUANTUM VACUUM POLARIZATION AT THE BLACK-HOLE HORIZON

We consider the scalar field of mass m &#x3E; 0, obeying the Klein-Gordon

equation

with the homogeneous Dirichlet boundary condition

We have studied the classical solutions in spaces of finite energy, of Sobolev

type H1 x L2 in [3]. For quantum solutions we need a fine analysis of the
propagator in spaces of type H ~ x H- ~ . Taking advantage of the spherical
invariance, we reduce the problem to solving an equation in one space
dimension, which we do in second part. Then we get the crucial asymptotic
behaviour for the three dimensional problem in the third part, and we prove
the Hawking effect in part 4.
We end this introduction by giving some bibliographic information. After

the historic paper by Hawking [16], a huge litterature has been devoted
by physicists to the quantum radiation of black-holes. This work is more
particularly connected with the following papers: Candelas [6], Fredenhagen
and Haag [12], Gibbons and Hawking [14], Sewell [22], [23], Unruh [24],
Wald [25], York [28], and see also the references in the classic monographs
on quantum field theory in curved space-time by Birrel and Davies [4],
DeWitt [7], Fulling [13], Haag [15], Wald [26], as well as the volume [ 1 ] .

II. ONE DIMENSIONAL STUDY

Taking advantage of the spherical invariance of the problem, it is

convenient to expand solutions W of (1.7) on the basis of spherical
harmonics. We note that

then by puting

Vol. 67, n’ 2-1997.



184 A. BACHELOT

is a solution of

where the potential 1// is given for l e N by

Therefore we consider the general mixed problem

in

with the Dirichlet condition

where the function z satisfies (1.5) and the potential V is such that there
exist x &#x3E; 0, m &#x3E; 0, ~c E &#x3E; 0 with

Obviously, the potentials Ví(x) defined by (II.3) satisfy assumptions (I1.7)
and r is an implicit function of x given by

The solution u(t. x) of (I1.4), (1.8) at time t is associated with the data at
time s by a propagator Uv(t. s):

Annales de l’Institut Henri Poincaré - Physique théorique



185QUANTUM VACUUM POLARIZATION AT THE BLACK-HOLE HORIZON

According to [3], we introduce the Hilbert space of finite energy fields
as the completion of Co (] z (t), x Co (] z (t) , oc[) for the norm

On the other hand, because the infinite Doppler effect, we need the Hilbert

space completion of x for the norm

The main properties of the propagator Uv (t, s) are given by the following

PROPOSITION 11.1. - There exists a constant Cv &#x3E; 0 such that

In fact, the relevant space in Quantum Fields Theory, is a third space, of
Sobolev type x H-1~~. Then we consider the self adjoint operators
on 

with dense domains

Vol. 67. n~ 2-1997.



186 A. BACHELOT

and we as the completion of x D ( I-~ ~ : t ) for the
norm

Our fundamental problem will be to estimate

where

Therefore we have to develop the scattering theory for (I1.4) in Rt x Rx,
t ~ +00, ~ 2014~ 2014oo, x + t = Cst. Since the potential Vex) tends to 0 as
x  -oc, we simply compare the solutions of (II.4) with the solutions of
the one dimensional wave equation

So we introduce: the operator lHIout on L2(1R) given by

1

and the Hilbert spaces and defined as the completions of
for the norms

We denote by the free propagator associated with (I.20)

1

which is unitary on both spaces Hout and It will be useful to introduce

the following subspaces of n 

Annales de I’Institut Henri Poincaré - Physique théorique



187QUANTUM VACUUM POLARIZATION AT THE BLACK-HOLE HORIZON

We remark that

To investigate the asymptotic behaviour of solutions we choose some
function 8 E such that

and we define the cut-off operator

and we introduce the Wave Operator defined for E by

PROPOSITION IL2. - Given E the strong limit (IL27) exists and
is independent of the function () satisfying (IL25). Moreover

Now we can state the fundamental estimate of this part: 
-

THEOREM II.3. - We assume that the function z satisfies (1.5) and the
potential V satisfies assumptions (II.7). Given F° = F+ + F° , 
we put

Then the norm of Uv (0, t)Ft in ?-~ ~ (V, 0) has a limit as t ---+ and

REMARK IL4. - The limit (II.28) is a very sharp estimate. Indeed we can
show that, on the one hand if 0:

Vol. 67. n° 2-1997.
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and on the other hand:

The first estimate is slightly discouraging, and the second one is not sufficient
because if 0, we have according to [3] for ~ &#x3E; 0:

but:

and

Moreover, if V &#x3E; a &#x3E; 0, then

and we have

because the result of the asymptotic completeness part in Theorem III-1

in [3]. Hence (II.28) is rather surprising. The key is that we deal with
a hyperbolic problem, and the previous functional considerations do not
describe the fine phenomenon of the propagation of the field. A precise
analysis of the structure of the propagator gives

thus by. interpolating with (IL29) we get

An exact calculus for the case V = 0, and a comparison between Uj- and
Uo give the explicit value of the limit.

Proof of Proposition II.1. - Estimates (II.12), (IL5) and (II.13) are proved
in [3]. To establish (II.14), we remark that the solution u of (II.4), (1.8)

Annales de l’/nstitut Henri Poincaré - Physique théorique



189QUANTUM VACUUM POLARIZATION AT THE BLACK-HOLE HORIZON

with data F = t) given at time t, satisfies for 0  s  t

the standard energy inequality:

Moreover we have

This completes the proof of (11.14).

with

Then we have to establish the existence of

We apply Cook’s method using (II.7), (II.14) and we evaluate

Therefore exists in and moreover satisfies:

Then we conclude by Lemma 11.8 below that F ( V, 0 ) .
Q.E.D.

In this paper we denote by 7(u) = u, the Fourier transform of a

tempered distribution u E S’(R).

Vol. 67, n° 2-1997.



190 A. BACHELOT

LEMMA n.5. - For ~Ty /3 &#x3E; 0, (sinh 
~ 0+, ~J ~-6 

n.5. - Given c &#x3E; 0, ~ e we denote =

~ ~V. ~ have:C3 B cosh(~~) / 
° "

Now given ~ ~ 0, ~  0 and N &#x3E; 0, M &#x3E; 0, we calculate:

We evaluate

on the path

Noting that for y E R

we get:

Annales de l’Institut Henri Poincaré - Physique théorique
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Now we choose M~ = -(~ + 21~~r ~ . We have for x 

We deduce that:

and

where are the residues of 
1 [sinh (03B2z)-i~]2 at the poles 

~z E C;~ &#x3E; ()}. We easily check that:

and

with

and

We get

Vol. 67, n 2-1997.
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Finally, this formula holds by parity for ç &#x3E; 0.
’ 

Q.E.D.

LEMMA Is 6. - Fo r (3 &#x3E; 0, ~ E we define

Then we have:

Proof of Lemma IL6. - We have:

with:

By calculating the Fourier transform of I 7} I we get:

Together with Lemma 11.5, this gives:

Q.E.D.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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LEMMA II.7. - For any R &#x3E; z(0), there exists C~ &#x3E; 0 such that for any
u E R[), and for any a &#x3E; 0, we have:

Proof of Lemma TI.7. - We introduce the cut off function

and we put:

We note that

hence

We introduce an auxiliary function wa :

We have:

67, n° 2-1997.
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We deduce from Lemma II.6 that

On the one hand, we evaluate

Hence by (11.37) we get:

On the other hand, we see

We have:

Annales de rlnstitut Henri Poincaré - Physique théorique
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Hence by (11.37) we get:

We conclude from (11.38), (11.39), (11.40) that
/w ~~B ’B.

Now we estimate Da = ~c - Va ; We denote by Y(x) the Heaviside
function and we have:

with

On the one hand, we calculate

then we get:

On the other hand, we easily check that

We deduce from (11.37), (I.42) and (11.43) that

Finally, Lemma II.7 follows from (11.41) and (11.44).

Q.E.D.

VoL 67, n° 2-1997.
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LEWMA II.8. - Let V be satisfy (II.7). Then for any R &#x3E; 0 there exists

CR,~- &#x3E; 0 such that for all F = E with F(x) = 0 for
x &#x3E; R, have:

and for any Q &#x3E; 0

Proof of Lemma 11.8. - We start by establishing some preliminary
estimates. Given cp E Co (~z(0),1-~~) we put = for x &#x3E; z(0)
and -cp (2z(0) - x) for x  z(0), then we have for s &#x3E; -1:

Since 2014P is an isometry from L2 (~ z (o), oo[) to satisfies:

we get:

thus:

Hence Lemma II.7 implies:

Annales de l’/nstitut Henri Poincaré - Physique théorique
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Now we have for zo  x  R:

Thus we get

Since the potential V is uniformly bounded we have

Thus, the Heinz theorem ([18], Theorem 4.12) implies

hence

We conclude from (11.47), (II.48) and (11.51) that

Now we consider E ~Co (~z(0); R~)~2 and we choose x E 
X(x) = 1 for x E (z(0); R]. We put

2-1997.
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and using (IJ.52) we evaluate
,

. 
We have

Hence

Moreover we have
,

Annales de l’Institur Henri Poincaré - Physique théorique
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Then we conclude with (11.53) and (11.54) that

Now we choose 8 E such that 9(.r) = 0 for x  0, and 9(.r) = 1
for x &#x3E; ~ , and we put:

so we have:

Since

the Heinz theorem implies

We get by (II.46) and Lemma 11.7:

67, n° 2-1997.
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We conclude by (l.56), (H.57) and (11.53) with f = 0 that:

Using (11.58) we evaluate

Moreover we have

Then we conclude that

Lemma II.8 follows from (II.55) and (II.59).

Q.E.D.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Then have

Proof of Lemma II.9. - We denote

According to the explicit formula for the propagator Uo (t, s) in [3], we
have for T &#x3E; 0 large enough:

and for

where the function T is defined by the relation

and satisfies

We define for T &#x3E; 0 large enough:

We calculate:

Vol. 67, n° 2-1997.
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with

Since 0, we get by the non stationnary phasis theorem:

Then we conclude with Lemma IL6 that

Now we compare pT and ~r by using (I.65), (I.66):

On the one hand we have

and there exists aT such that ~T, pT, IT and JT are compactly
supported in [aT, 0[ and

Hence we get

On the other hand

Annales de l’Institut Henri Poincaré - Physique théorique
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Therefore we obtain:

hence by Lemma lI.8 with 0152 = 1:

We follow the same ideas to estimate fT. We define for T &#x3E; 0 large enough:

We calculate:

As previously we get by the non stationnary phasis theorem:

Now we compare fT and 1fJT using (I.62):

We deduce from (I.70) that

hence by Lemma 11.8 with a = 1:

Now (I1.9) follows from (11.69), (11.73), (II.75) and (11.71).

Q.E.D.

Vol.67,n° 2-1997.
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LEMMA II.10. - Given F- and FT as in Lemma IL9 we have:

Proof of Lemma n.lO. - Since

the Heinz theorem implies:

where ~T is given by (II.67). Hence we have:

where F is defined by (I.68). By the dominated convergence theorem

and, (11.69) we deduce that

We apply Lemma II.8 with ex = 1:

and we get from (II.77) and (II.78) that

The Heinz theorem implies also:

Annales de I lnstitut Henri Poincaré - Physique théorique
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Hence we have:

J

We note that (11.74) implies

hence we conclude by (11.73) that:

Lemma II, 10 follows from (IL79j and (11.81). 

LEMMA II.11. - Given R &#x3E; 0 there exists C~ &#x3E; 0 such that for any T &#x3E; 0

and for any FT E -T + R~)~2 we have:

Proof of Lemma II.11. - Denoting t(fT, pT ) = Uv (o, T) FT, we get from
Lemma 11.8 that for 0  a  - z ( 0 ) :

Vol. 67, n 2-1997.
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We note that for a  -T - z (T ) the standard energy inequality yields:

hence (II.11 ) follows from (ll.83), (U.84), and (ll.I5) with a = -T - z (T ).
Q.E.D.

LEMMA IL 12. - For any R &#x3E; 0, there exists CR &#x3E; 0 such that for any
t  0, cp, E -t + R[), we have

Proof of Lemma II.12. - For z(t)  x  -t we have:

and for -t  x  R, we have:

Hence for all x:

and Lemma II, 12 follows by integrating.
Q.E.D.

LEMMA IL 13. - Given F_ and FT as in Lemma II.9 we have:

Proof of Lemma II.13. - We recall the Duhamel formula

Annales de /’Institut Henri Poincaré - Physique théorique
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hence

We denote by ()R,T the solution of

The assumptions on z(t) imply

The support of (~, x) Uo(6; is described by

By Lemma 11.11 we have

with

On the one hand, for a E we have uT(a, x) = x + a).
Thus (II.80), (fl.7) and (H.92) imply

On the other hand, for a E T] we have by Lemma 11.12, (II.90),
(11.91), (II.7) and (11.15):

Vol. 67, nO 2-1997.
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We deduce from (11.89). (II.93), (H.94) and (11.95) that

Then we conclude thanks to Lemma 11.10. Q.E.D.

Proof of Theorem II.3. - We have:

On the one hand, Proposition 11.2 and Lemma II.8 imply

On the other hand, denoting F° = ~/-, -/~_), Lemma 11.13 gives

moreover (II.80), (11.62) imply Uo (0, T)FT  0 in the sense of distributions
as T -~ and since is bounded in 7~(V,0) according to
Lemma ILIO, then

hence by (II.96) we have:

so we get from (II.97) and (II.99):

The Theorem follows from (II.97), (IL98) and (n.lOO).

Q.E.D.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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III. ESTIMATES FOR CLASSICAL FIELDS

The mixed problem (1.7)(1.8) with data ~ given at time s

is formally solved by a propagator U (t, s )

More precisely, we proved in [3] that U(t, s) is a strongly continuous
propagator on the family of Hilbert spaces of finite energy fields 
defined as the completion of Co (] z (t) , oo ~~.* x x Co (] z (t) , x 

for the norm

Moreover we have the following energy estimates

This last estimate means that the backward propagator is not uniformly
bounded in the energy norm of because of the infinite Doppler
effect due to the collapse to a Black-Hole. This fact makes very delicate
the development of a scattering theory. Then, to take account of this

phenomenon, it is necessary to introduce a new functional framework, HI (t)
defined as the completion of C~(]~), x x C~(]~), oo ~~~ x 
for the norm

67, n 2-1997.
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We can interpret this space in terms of conormal distributions associated
with the vector fields:

The main property is that the propagator is uniformly bounded on 
for each spherical harmonic: for lEN, m E I m ) I, we denote by

the projector from x ~.) onto 0 defined by

where N, ?r~ e 7~, ~ ] ?7z  l ~ is the spherical harmonics basis
of L2 ( S2 ) . The crucial estimate is the following:

For the quantum field theory, we need a third space associated with
the generator of the propagator ; so we introduce the positive selfadjoint
operator on

given by:

with dense domain

and the Hilbert space H1 2 (t) completion of x 4 ) for the norm

The relations between these spaces are given by the following:

PROPOSITION III, I. - Denoting by ~’ the set of compactly supported
distributions, u.Te have:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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At last we introduce the tools necessary to study the asymptotic behaviour
of fields near the future Black-Hole Horizon. We compare the solutions

of (1.7) as t - +00, r - 2M, with the solutions of

So we introduce: the operator on

given by

1

the Hilbert spaces HBH and H2BH defined as the completions of

x for the norms 
.

and the subspaces

We denote by UBH (t) the unitary group on associated with (III, 15)
and, given some function 8 satisfying (I.25), we introduce the cut off
operator defined by

Vol. b7, n ° 2-1997.
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and we construct the Horizon Wave Operator defined for E by

PROPOSITION IIL2. - For any E the strong limit (III.21 ) exists
and is independent of the choice ofthe function () satisfying (II.25). Moreover

Now we can state the fundamental estimate of this part:

THEOREM III.3. - We assume that the function z satisfies (1.5). Given

Then the norm of U(0, in (0) has a limit as t ---+ +00 and

REMARK III.4. - As in Remark II.4, we note that estimates {III.S)(IIL7)
and Proposition III.1 show that limit (III.22) is a very sharp estimate.

Proof of Proposition III.1. - We can easily express ~C(t), 
Ht, in terms of the spaces and operators of Part II. We introduce the map
R defined by:

with

Then we have:

Annales de l’Institut Henri Poincaré - Physique théorique
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and for

we have:

On the one hand we have for

and on the other hand the Heinz theorem and Lemma II.8 imply

where CR does not depend on Vl &#x3E; 0. Therefore (III.12) follows from

(III.30), (111.31), (III.32) and (111.33). To establish (111.13) we note that
since

Vol. 67, n 2-1997.
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we have

At last, to prove (1II.14) we choose ~ E = 1, and we put:

We easily check that t( fn, is a Cauchy sequence in but

converges as n - oc to So (r* ) + ~,

in which does not belong to H 2 x 
Q.E.D.

Proof of Proposition III.2. - We have:

hence for 
,

Annales de l’Institut Henri Poincaré - Physique théorique
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we have:

Since

and

we have with (II.14) :

so Proposition 11.14 follows from (II.40), (III.42), and Proposition 11.2
and we have

Proof of Theorem IIL 3 . - Given

we put

hence

Vol. 67, n ° 2-1997.
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Firstly, by (111.41), (11.14), (III.28), and Lemma II.8, we have:

and secondly, by Theorem II.3 and (111.28) we have:

therefore we conclude with (III.44) and (III.37) that

Q.E.D.

IV. QUANTIZATION AND HAWKING’S RADIATION

We recall the basic concepts of the quantum machinery (see e.g. [8],
[ 17], [19] , [5], [21], [27]). Algebraic quantum field theory deals with some
C* - algebra, 21, and some states, o, which are positive, normalized, linear
forms on U. To construct these objects we start with a Weyl quantization

on a real linear space D endowed with a skew-symmetric, non
degenerate, bilinear form , a(.,.), where S) is a complex Hilbert space,
and 2U is a map: 03A6 E D - from D to the space of unitary
operators on S), satisfying the Weyl version of the canonical commutation
relations (CCR’s):

and

is continuous for any finite dimensional subspace D f of D, and any arbitrary
vector ~~ E 5). The fundamental example is the Fock-Cook quantization

Annales de l’Institut Henri Poincaré - Physique théorique
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of a Hilbert space # with 03C3 = 23  .,. &#x3E;. It is constructed as

follows: we take .~( f) the boson Fock space over ~ :

where stands for the n-fold symmetric tensor product of f), and
we put:

where is the standard creation operator.
We define the algebra of observables as the minimal C* -

subalgebra in the space () of bounded linear maps on , containing all
the operators 3D(~). The algebra of observables is unique in the following
sense: if and (3N,~) are two Weyl quantizations on D, possibly
non unitarily equivalent if the dimension of D is infinite, if 9t(D) and

are the associated algebras, Von Neumann’s uniqueness theorem
assures that the can be extended in a norm-preserving
and involution-preserving isomorphism from 2t(D) onto 
Now given c.ù a state on the map:

satisfies

(IV.8) E E C) for all finite dimensional subspace D j of D.

Each functional satisfying properties (IV.6), (IV.7), (IV.8) is called a

generating functional over D. The importance of this notion is that it

provides the possibility of reducing a quantum problem, the study of states
on a C* - algebra, to a classical problem, the study of functionals on D:
conversely, each generating functional E determines uniquely a state WE

Vol. 67, n= 2-1997.
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with a suitable Weyl quantization and cyclic vector
SjE by formula:

For instance the Fock vacuum state 03C90 on 2l( fJ), associated with the Fock
vacuuln vector 03A9F = (1, 0, 0, ...) E is defined by the functional:

The above constructions can be generalized to allow the quantization
of a boson single particle space (Dt, ~t, U(s, where Dt is a real

linear space endowed with a skew-symmetric, non degenerate, bilinear form
~t(...), and U(s, t) is a symplectic propagator from (Dt, ~t) onto 
A Weyl quantization of U(s, is defined as a

family of Weyl quantizations .~), of (Dt, satisfying for all t, s E R:

Then U(Ds) ~ 2t and a state 03C9 is characterized by one of the
generating functionals

which satisfy

In particular, the Fock quantization of a boson single particle space is

defined by a real linear map K from Do to some complex Hilbert space
~, satisfying:

and by putting

where is the Fock quantization of . We call ground quantum
state, the state w0 on 2( associated with the functional:
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More generally, given a positive, densely defined, selfadjoint operator H

satisfying:

a thermal quantum state 03C903B8 of temperature () &#x3E; 0 with respect to is

associated with the functional

In terms of particles, if H is the Klein-Gordon hamiltonian, (IV.18) describes
a gaz of free bosons at temperature 8.

We apply the previous tools to define the Fock quantization of a spin-0
field outside the collapsing star, (Dt, at; U(s, by putting:

where U(t, s) is the propagator (II.2), and Ho is the selfadjoint operator
(III.9), (III.10) at time 0. In the same way we quantize the fields of particles,
falling into the Black-Hole Horizon, or radiating
to infinity, by putting:
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We investigate the quantum state measured by a fiducial observer falling
into the future Black-Hole Horizon. The particles detector that reaches the
future Black-Hole Horizon as t - +00, is modelized by an observable

THEOREM IV.l (Main Result). - Given we denote for t &#x3E; 0:

Then

REMARK IV.2. - The limit (IV.28) is the main result of this work. It is

the famous statement by S. Hawking [ 16] : For an observer going across
the Horizon created by a gravitational collapse, the Black-Hole seems to
be radiating to infinitv at temperature g~_~r . We will study the case of an
obser-ver at rest respect to the Black-Hole in a future paper.
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Proof of Theorem N.I. - We apply (IV, 10) and Theorem III.3 to get:

Q.E.D.
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