
Ann. Henri Poincaré 1 (2000) 1043 – 1095
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Creation of Fermions at the Charged Black-Hole Horizon

Alain Bachelot

Abstract. We investigate the quantum state of the Dirac field at the horizon of
a charged black-hole formed by a spherical gravitational collapse. We prove this
state satisfies a KMS condition with the Hawking temperature and the chemical
potential associated with the mass and the charge of the black-hole. Moreover, the
fermions with charge of same sign to that of the black-hole are emitted more readily
than those of opposite charge. It is a spontaneous loss of charge of the black-hole
due to the quantum vacuum polarization.

I Introduction

The purpose of this paper is to investigate the quantum state of charged spinor
fields at the horizon of a black-hole created by the collapse of a spherical charged
star. Our main result expresses that the ground state, that is given by the Boulware
vacuum in the past, is of Unruh type at the future horizon. It is the famous
Hawking effect : a static observer at infinity, interprets this state as a thermal
radiation of particles and antiparticles outgoing from the black-hole. Moreover the
black-hole emits more readily fermions whose the charge is of same sign as its own
charge. A similar phenomenon for the scalar fields has been discussed by G. W.
Gibbons in [21].

The space time outside the collapsing star is given by a four-dimensional,
globally hyperbolic manifold (M,g), of Kruskal-Reissner-Nordstrøm type, endowed
with a 1-form Aµdx

µ (the electromagnetic potential due to the star). The boundary
∂M of M has two pieces : a time-like part S (the moving surface of the star), a
characteristic part H+ (the future black-hole horizon). We first solve the mixed
hyperbolic problem for the Dirac system for the particles of mass m and charge q,

iγµ(∇µ + iqAµ)Ψ−mΨ = 0, in M, (I.1)

with initial data on a space-like hypersurface Σ0. To take the interaction between
the matter of the star and the field, into account, we add some boundary condition,

nµγ
µΨ = BΨ, on S, (I.2)

where B belongs to a large class of operators on S, including in particular the MIT
condition [13] :

B = ieiαγ
5
.
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Then we construct the local algebra of observables A(M), and given the Fock vac-
uum on Σ0, corresponding to the Boulware vacuum in the past, we prove that the
quantum state on H+ satisfies a KMS condition involving the mass and the charge
of the star (Unruh state). Moreover the temperature and the chemical potential
are independent of the history of the collapse, and the boundary condition. We
also investigate the role of the cosmological constant in the case of the charged
black-holes in an expanding universe (De Sitter-Reissner-Nordstrøm metric).

From a mathematical point of view, we adopt the framework of our previ-
ous studies on the Hawking effect for the Klein-Gordon fields [2], [3], [4]. It is
convenient to choose a frame for which H+ is pushed away to the null infinity
(Schwarzschild-like coordinates). Then the surface of the star is an asymptotically
characteristic moving boundary, and an asymptotically infinite Doppler effect ap-
pears (blue shift). Hence the problem is reduced to a very sharp analysis of the
asymptotic behaviour of the Dirac propagator. The key point consists in proving
that the approximation by the geometrical optics is valid.

This paper is organized as follows : we precise the geometric assumptions in
part two; we present the key asymptotic estimate for the classical Dirac equation
in the third part; we construct the quantum field and we state the main result
on the Hawking effect in part 4; this result is discussed in part 5, especially the
interpretation in terms of particles, and we study the role of the cosmological
constant; part 6 is devoted to the mathematical proofs of the results of parts 3 and
4; taking advantage of the spherical invariance, we reduce the problem to studying
a system in one space dimension, which we investigate. After the conclusion, we
give in the appendix, by sake of completeness, the main tools of the quantization
of the spin fields on the stationary space-times.

We end by giving some bibliographic information. Obviously, the list of refer-
ences is very incomplete. We cite only the works that we have used. Among a huge
literature on the Hawking effect, we can mention [3], [4], [10], [18], [19], [21], [22],
[31], [36], [37], [40], [41], [42]. More generally, the quantum field theory on curved
spacetime is investigated in [1], [8], [16], [17], [20], [24], [30]. The Dirac equation
on a black-hole background has been studied in [5], [12], [27], [32], [33], [34], [35]
[37], [40].

II Geometrical Framework

The space-time outside a static spherical black-hole is a four dimensional, globally
hyperbolic manifold (MBH , g)

MBH = Rt×]r0, r+[r×S2
θ,ϕ, 0 < r0 < r+ ≤ ∞,

gµνdx
µdxν = Fdt2 − F−1dr2 − r2(dθ2 + sin2 θdϕ2). (II.1)
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Here F is a C1 function of r > 0 satisfying

F (r0) = 0, F ′(r0) > 0, r0 < r < r+ ⇒ F (r) > 0. (II.2)

r0 is the radius of the black-hole horizon, and we introduce

κ0 :=
1
2
F ′(r0), (II.3)

the surface gravity at the black-hole horizon. As regards r+, we assume, either that

r+ <∞, F (r+) = 0, F ′(r+) < 0, (II.4)

then MBH is asymptotically of DeSitter type, and r+ is the radius of the cosmo-
logical horizon, or

r+ = ∞, lim
r→∞

F (r) = F (∞) > 0, lim
r→∞

F ′(r) = 0, (II.5)

in which case MBH is asymptotically flat in a weak sense. The fundamental exam-
ple is the Reissner-Nordstrøm metric, which is the unique spherically symmetric
solution of the Einstein-Maxwell equations in the vacuum :

F (r) = 1− 2M
r

+
Q2

r2 , 0 ≤| Q |< M. (II.6)

0 < M and Q are respectively the mass and the electric charge of the black-hole,
the radius and the surface gravity of which are :

r0 = M +
√

M2 −Q2, κ0 =

√
M2 −Q2(

M +
√

M2 −Q2
)2 (and r+ = ∞). (II.7)

More generally we could consider spherical charged black-holes in an expanding
universe, described by the DeSitter-Reissner-Nordstrøm metric

F (r) = 1− 2M
r

+
Q2

r2 −
Λ
3
r2, (II.8)

where Λ > 0 is the cosmological constant.
It is well-know that the black-hole horizon is a fictitious singularity of the

metric, that can be removed by a suitable change of variables. It is convenient to
introduce a tortoise radial coordinate x ∈ R satisfying :

dx

dr
= F−1, (II.9)

by choosing for r ∈]r0, r+[

x =
1

2κ0

{
ln | r − r0 | −

∫ r

r0

[
1

r − r0
− 2κ0

F (r)

]
dr

}
+ x0. (II.10)
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We note that the map :
x ∈ R �→ r ∈]r0, r+[

is one-to-one with the asymptotic behaviour :

| r − r0 |= O(e2κ0x), x→ −∞. (II.11)

We can extend x(r) for r ∈]r−, r0[ by the formula (II.10) for r− such that

0 < r− < r0, r− < r < r0 ⇒ F (r) < 0.

We define the Kruskal-Szekeres coordinates (T,X, θ, ϕ) :

T =
1
2
eκ0x

(
eηκ0t − ηe−ηκ0t

)
, X =

1
2
eκ0x

(
eηκ0t + ηe−ηκ0t

)
, η =

r − r0
| r − r0 |

.

(II.12)

The Schwarzschild type coordinates (t, r, θ, ϕ) give two local maps with domains
M = Rt×]r0, r+[r×S2

θ,ϕ and Rt×]r−, r0[r×S2
θ,ϕ, but fail to represent the black-

hole horizon {r = r0}. Kruskal-Szekeres coordinates define an atlas with a single
map with domain a neighborhood ofMBH = {(T,X, ω); X ≥| T |, ω ∈ S2}, and
the black-hole horizon appears as the characteristic submanifold {X =| T |}×S2

ω.

In fact we are concerned with the realistic black-holes created by the gravita-
tional collapse of a spherical star. So we consider a star, stationary in the past, con-
tracting to a black-hole in the future. In Kruskal-Szekeres coordinates, its boundary
is given by

{(T,X = Z(T ), ω), T ∈ R, ω ∈ S2}
where Z is a C2 function of T ∈ R. Since the star boundary is necessarily time
like, we have :

−1 < Z ′(T ) ≤ 0, (II.13)

and the creation of the black-hole is expressed by :

∃T0 > 0; Z(T0) = T0. (II.14)

Hence we deal with the manifold

M =
{

(T,X, ω) ∈ R× R× S2; T ≤ T0 ⇒ X ≥ Z(T ), T0 ≤ T ⇒ X ≥ T
}
,

(II.15)

and its boundary ∂M consists of the world lines of the star boundary :

S = {(T,X = Z(T )); T ≤ T0} × S2, (II.16)

and the future black-hole horizon :

H+ = {(T,X = T ); T ≥ T0} × S2. (II.17)
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To study the structure of the quantum state on H+ we should have to
solve a Characteristic Cauchy problem with data on H+, for a hyperbolic system
with T -dependent coefficients, on the manifold M that is singular at S ∩H+ =
{(T0,X = T0)} × S2. Therefore we prefer to adopt the Schwarzschild-like coordi-
nates (t, x, θ, ϕ) for wich the coefficients of the Dirac system are t-independent and
the singularity is pushed away to infinity. Instead of solving a Goursat problem,
we develop a time dependent Scattering type theory on :

M =
{

(t, x, ω); t ∈ R, x ≥ z(t), ω ∈ S2} , (II.18)

where the boundary is described by the function z(t) defined by

X = Z(T ) ⇐⇒ x = z(t). (II.19)

We can easily prove (see [2]) that this function satisfies :


z ∈ C2(R),
∀t ∈ R, −1 < ż(t) ≤ 0,
z(t) = −t−Ae−2κ0t + ζ(t), A > 0,
| ζ(t) | + | ζ̇(t) |= O(e−4κ0t), t −→ +∞,

(II.20)

and for commodity, we choose x0 in (II.10) such that

∀t ≤ 0, z(t) = z(0) < 0. (II.21)

Here A depends only on κ0, and we remark that the physics of the collapse is hid-
den in the rest ζ(t), when the leading term −t−Ae−2κ0t involves only the surface
gravity. This fact leads to the No Hair property of the Hawking effect.
With this choice of frame, the star boundary S seems to be asymptotically char-
acteristic :

S =
{

(t, x = z(t), ω); t ∈ R, ω ∈ S2} , (II.22)

and a point of the future horizon H+ is reached at the infinity of a null ray
(t, x = −t + t0, ω)t∈R

as t→ +∞, in short :

lim
t→+∞

(
t, x = −t +

1
κ0

ln(2T1), ω
)

= (T1,X1 = T1, ω) ∈ H+. (II.23)

Finally the geometrical framework of a generic spherical gravitational collapse is
given by (II.1), (II.2), (II.4), (II.5), (II.18), (II.20), (II.21).

III The Classical Dirac Equation

We consider the Dirac equation for particles with charge q ∈ R and mass m ≥ 0
outside a collapsing charged spherical star :

iγµ(∇µ + iqAµ)Ψ−mΨ = 0.



1048 A. Bachelot Ann. Henri Poincaré

Here the 1-form
Aµdx

µ

defines the electromagnetic field created by the star. The geometrical framework
is given in Part II. Then the Dirac equation has the form in (t, r, θ, ϕ) coordinates
(see e.g. [33], [34], [27]) :

0 = {
iF− 1

2γ0
(

∂

∂t
+ iqAt

)
+ iF

1
2γ1

(
∂

∂r
+

1
r

+
F ′

4F
+ iqAr

)

+
i

r
γ2
(

∂

∂θ
+

1
2 tan θ

+ iqAθ

)
+

i

r sin θ
γ3
(

∂

∂ϕ
+ iqAϕ

)
−m

}
Ψ,

(III.1)

where the Dirac matrices are :

γ0 = i

(
0 σ0

−σ0 0

)
, γa = i

(
0 σa

σa 0

)
, a = 1, 2, 3,

with the Pauli matrices :

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
.

We have to add a boundary condition on the star surface. We write this condition
as

nµγ
µΨ = BΨ (III.2)

where nµ the unit outgoing normal and B is some operator on the surface of the
star. It is natural to assume B is local in time, rotationally invariant and such that
the L2-norm of the spinor is conserved. Such a boundary condition, which is local
in space-time, is the generalized MIT boundary condition [13], [26] (see also [5]) :

BMITΨ = ieiαγ
5
Ψ, (III.3)

where α ∈ R is the Chiral Angle and

γ5 := −iγ0γ1γ2γ3 =
(

σ0 0
0 −σ0

)
. (III.4)

When the spinor field is massless (m = 0), the system is chiral invariant : we can
choose any real α. When m is non zero, (III.3) defines a family of non equivalent
boundary conditions. In this case, and if the space-time is asymptotically flat, we
must restrict the range of the chiral angle :

m �= 0, r+ = ∞ =⇒ α �= (2k + 1)π, k ∈ Z. (III.5)
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We are interested by proving that the Hawking effect does not depend of the
interaction between the field and the matter of the star. Hence we consider a
very large class of boundary conditions given by the family of zero order pseudo-
differential operators

B =
∑
�,n

ieiα�,nγ
5
Π�,n, (III.6)

where the sequence (α�,n) satisfies (III.5), and Π�,n is the orthogonal projector on
the (*, n)-space of the spinoidal spherical harmonics expansion (VI.4).

We assume that the electromagnetic potential satisfies{
At = A(r) ∈ C1([r0, r+]),
Ar = Aθ = Aϕ = 0.

(III.7)

These hypotheses are fullfilled in the important case of the Reissner-Nordstrøm
Black-Hole since (see e.g. [11]) :

A =
Q

r
. (III.8)

In fact the Dirac equation is obviously well defined on the whole space-time.
In Kruskal coordinates (T,X, ω) we introduce the spinor field

ΦK(T,X, ω) = rF
1
4 (r)eitqA(r0)MΨ(t, r, ω), (III.9)

with

M :=




1 0 0 0
0 F− 1

2 0 0
0 0 F− 1

2 0
0 0 0 1


 ,

and the Dirac system becomes :

0 = { ∂

∂T
+ γ0γ1 ∂

∂X
+ i

q

κ0
(A−A(r0))

(
X1 + Tγ0γ1)−1

+
1

4κ0
(X + T )−1F ′F

1
2
(
1 + γ0γ1)+

1
κ0

F
1
2
(
X1 + Tγ0γ1)−1

Mγ0
{

1
r
γ2
(

∂

∂θ
+

1
2 tan θ

)
+

1
r sin θ

γ3 ∂

∂ϕ
+ im

}
M−1

}
ΦK

(III.10)

We can easily check that all the coefficients, which are (T,X, ω) dependent, are
regular on the horizon H+. We could use the theory of the mixed hyperbolic
systems to solve it, but since we want to get some precise information on the fields
near the horizon, it is more convenient to use the tortoise coordinate x ∈ R given
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by (II.10) instead of r ∈]r0, r+[, and to change the representation of the spinor
again, by introducing

Φ(t, x, θ, ϕ) = rF
1
4 Ψ(t, x, θ, ϕ). (III.11)

Given a spinor field Φs defined on the Cauchy hypersurface

Σs =]z(s),∞[x×S2
ω, (III.12)

the mixed problem becomes :

∂

∂t
Φ + γ0γ1 ∂

∂x
Φ + iqAΦ + F

1
2γ0

{
1
r
γ2
(

∂

∂θ
+

1
2 tan θ

)
+

1
r sin θ

γ3 ∂

∂ϕ
+ im

}
Φ = 0, x > z(t), (III.13)

x = z(t) =⇒ 1√
1− ż2

(
żγ0 − γ1)Φ = iBΦ, (III.14)

Φ(t = s, .) = Φs(.). (III.15)

To construct the functional framework, we introduce the Hilbert spaces :

L2
t :=

[
L2(Σt, dxdω)

]4
, L2

∞ :=
[
L2(Rx × S2

ω, dxdω)
]4

. (III.16)

For s < t ≤ ∞, L2
s is naturally embedded in L2

t ; this amounts to extending the
function by zero for x ≤ z(s). We denote ‖ . ‖ the norm in L2

t . We define on L2
t

the operator Ht :

HtΦ = iγ0γ1 ∂

∂x
Φ− qAΦ + iF

1
2γ0

{
1
r
γ2
(

∂

∂θ
+

1
2 tan θ

)
+

1
r sin θ

γ3 ∂

∂ϕ
+ im

}
Φ,

(III.17)

t ∈ R, D(Ht) =
{

Φ ∈ L2
t ; HtΦ ∈ L2

t , x = z(t) ⇒ 1√
1− ż2

(
żγ0 − γ1)Φ = iBΦ

}
,

(III.18)

D(H∞) =
{

Φ ∈ L2
∞; H∞Φ ∈ L2

∞
}
. (III.19)

Lemma III.1. The operator iHt is maximal accretive for any t, and skew-adjoint
for t ≤ 0 and t = ∞. Moreover the point spectrum of H∞ is empty.



Vol. 1, 2000 Creation of Fermions at the Charged Black-Hole Horizon 1051

Since H∞ has no eigenvalue, there exists no time-periodic Dirac fields with
finite energy on the whole Reissner-Nordstrøm space-time. We let open the prob-
lem of the existence of such solutions outside a stationary star, and we solve the
Dirac equation outside the collapsing star. The mixed problem has the form :

∂

∂t
Φ = iHtΦ, (III.20)

and it is solved by a propagator

Φ(t) = U(t, s)Φs. (III.21)

More precisely we apply a Trotter-Kato method to get the following :

Proposition III.2. For Φs ∈ D(Hs), there exists a unique solution Φ ∈ C1(Rt;L2
∞)

of (III.13), (III.14), (III.15), (III.6), satisfying for any real t :

Φ(t) ∈ D(Ht). (III.22)

Moreover we have :

‖ Φ(t) ‖=‖ Φs ‖, (III.23)

and U(t, s) can be extended in an isometric strongly continuous propagator from
L2
s onto L2

t satisfying

∀Φs ∈ D(Hs), (t �→ U(t, s)Φs) ∈ C1 (
Rt,L2

∞
)
,

d

dt
U(t, s)Φs = iHtU(t, s)Φs,

(III.24)

∀Φs0 ∈ [C∞
0 (Σs0)]4 , ∃h > 0, (III.25)

(s �→ U(t, s)Φs0) ∈ C1 (]s0 − h, s0 + h[,L2
t

)
,

d

ds
U(t, s)Φs0 = −iU(t, s)HsΦs0 ,

(
x > R⇒ Φs(x, ω) = 0

)
⇒
(
x > R+ | t− s |⇒ [U(t, s)Φs](x, ω) = 0

)
. (III.26)

Now we state that, given ΨBH a field falling into the future black-hole, there
exists a unique Dirac field Ψ which is equal to ΨBH at the horizon, and Ψ = 0
at the null infinity. Since we have chosen the Schwarzschild coordinates (t, x, ω),
this characteristic problem becomes a scattering problem : the characteristic data
becomes an asymptotic data. The link between Φ and ΦK makes clear the suitable
set of asymptotic data near the horizon. Since ΦK is well defined on H+, the
relation Φ = e−itqA(r0)M−1ΦK implies that Φ2(t, x = −t + s, ω) and Φ3(t, x =
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−t + s, ω) tends to zero as t→∞. Therefore we introduce the subspaces of fields
Φ, falling into the black-hole as t tends to infinity :

L2
BH =

{
Φ ∈ L2

∞; Φ2 = Φ3 = 0, x < 0 ⇒ Φ(x, ω) = 0
}
, (III.27)

or going out to infinity :

L2
out =

{
Φ ∈ L2

∞; Φ1 = Φ4 = 0, x < 0 ⇒ Φ(x, ω) = 0
}
. (III.28)

At the black-hole horizon the electromagnetic potential equals to A(r0) and
F is zero, hence we compare the dynamics (III.20) with :

∂

∂t
Φ = iHBHΦ, (III.29)

HBHΦ = iγ0γ1 ∂

∂x
Φ− qA(r0)Φ, D(HBH) =

{
Φ ∈ L2

∞; HBHΦ ∈ L2
∞
}
.

(III.30)

HBH is selfadjoint and the Cauchy problem for (III.29) is solved by the unitary
group on L2

∞ :

UBH(t) := eitHBH . (III.31)

Since A(r) → A(r0) and F (r) → 0 exponentially, the Cook method allows to
construct the wave operator that gives the solution of the asymptotic problem :

Proposition III.3. Assume Φ ∈ L2
BH . Then the strong limit :

ΩBHΦ = lim
T→+∞

U(0, T )UBH(T )Φ in L2
0 (III.32)

exists and defines an isometry from L2
BH to L2

0.

We can now state the main result of asymptotic behaviour of the propagator
near the horizon. To express this estimate we shift the Cauchy data toward the
black-hole horizon by the following way. For Φ ∈ L2

∞ and T > 0 we put :

ΦT (x, ω) = Φ(x + T, ω). (III.33)

Theorem III.4 (Key Estimate). Given Φout ∈ L2
out, ΦBH ∈ L2

BH , we have for
J = [0,∞[ or ]0,∞[ :

lim
T→∞

‖ 1J(H0)U(0, T )
(
ΦT
out + ΦT

BH

)
‖2

=< Φout, ζe
2π
κ0

HBH

(
1 + ζe

2π
κ0

HBH

)−1
Φout >L2

∞

+ ‖ 1J(H0) (ΩBHΦBH) ‖2 .

(III.34)

with

ζ = e
2π
κ0

qA(r0). (III.35)
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We remark that the term involving Φout in the right member of (III.34) does
not depend on the boundary condition of type (III.2), (III.6), and on the mass of
the field. It is also independent of the history of the collapse defined by function
z(t).

We briefly describe the main ideas of the proof. The key phenomenon is
the asymptotically infinite Doppler effect due to the collapse to a black-hole : in
Schwarzschild coordinates, the contracting surface of the star is asymptotically
characteristic. Hence it appears a blue shift and we establish that the approx-
imation of the geometrical optics is valid : for large T , the main part of the
energy of t �→ U(t, T )ΦT

out, 0 ≤ t ≤ T , propagates near the null hypersurface
{(t, x = −t, ω), 0 ≤ t ≤ T, ω ∈ S2}. Furthermore we can evaluate the leading
term of U(0, T )ΦT

out :

U(0, T )ΦT
out ∼ Φ∗

T + o(1), T →∞,

with
Φ∗
T (x, ω) := eiqA(r0)T 1

| κ0x |
1
2

(−Φout,3(y, ω), 0, 0,Φout,2(y, ω)) ,

y := 2T +
1
κ0

ln(−x)− 1
κ0

ln(A).

We have :
‖ 1J(H0)

(
U(0, T )ΦT

out

)
‖∼‖ 1J(HBH) (Φ∗

T ) ‖,

moreover, an explicit calculation by Fourier transform gives the fundamental iden-
tity for any T > 0 :

‖ 1J(HBH) (Φ∗
T ) ‖2=< Φout, ζe

2π
κ0

HBH

(
1 + ζe

2π
κ0

HBH

)−1
Φout >L2

∞
.

Finally, we remark that U(0, T )ΦT
out and U(0, T )ΦT

BH are asymptotically orthogo-
nal as T →∞, since U(0, T )ΦT

out weakly converges to zero because of the Doppler
effect, and U(0, T )ΦT

BH strongly converges to ΩBHΦBH .

IV The Quantum Dirac Fields

We interpret the crucial result (Theorem III.4) in the framework of the Quantum
Field Theory. Since we deal with a curved space-time with moving boundary,
the concept of particles is not appropriate, hence we adopt the approach of the
algebras of local observables in the spirit of [16], [19]. According to J. Dimock
[17], we construct the algebra of quantum spin fields on a curved space-time as
following. We consider a globally hyperbolic manifold U with a foliation by a family
of Cauchy hypersurfaces Σt, i.e.

U = ∪t∈RΣt.
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We choose a representation of the CAR (= canonical anticommutation relations)
on Σ0. It consists of a Hilbert space H and some antilinear continuous function Ψ0
between the space of spinors on Σ0, that we represent as L2(Σ0,C

4), and L(H),
satisfying in particular

Ψ∗
0(F1)Ψ0(F2) + Ψ0(F2)Ψ∗

0(F1) =< F1, F2 > 1.

Now a classical spin field structure is defined by a propagator B(t, s) that is an
isometry from L2(Σs,C

4) onto L2(Σt,C
4). We introduce the operator

S : Φ ∈ C∞
0 (U ,C4) �−→ S(F ) :=

∫ ∞

−∞
B(0, t)Φ(t)dt ∈ L2(Σ0,C

4). (IV.1)

Then the quantum spin field is the operator valued distribution

Ψ : Φ ∈ C∞
0 (U ,C4) �−→ Ψ(Φ) := Ψ0(SΦ) ∈ L(H). (IV.2)

For any open set O ⊂ U , the algebra of observables is

A(O) := C
∗ algebra generated by Ψ∗(Φ1)Ψ(Φ2), supp Φj ⊂ O.

A beautiful result due to Dimock assures that the collection A(O) is indepen-
dent (up to a net isomorphism) of the representation of the CAR, the Cauchy
hypersurface, and the choice of spin structure.

Now we consider a state ωΣ0 on the C
∗ algebra generated by Ψ∗

0(F1)Ψ0(F2),
Fj ∈ L2(Σ0,C

4). Then we define a ground state ωU on A(U) by putting for Φj ∈
C∞

0 (U ,C4) :

ωU (Ψ∗(Φ1)Ψ(Φ2)) := ωΣ0(Ψ∗
0(SΦ1)Ψ0(SΦ2)). (IV.3)

In the case of the stationary space-times, we have Σt = {t}×Σ0, the generator
of the propagator is a densely defined self adjoint operator H on L2(Σ0,C

4) :

B(t, s) = ei(t−s)H,

and the Fock vacuum state on Σ0 is defined by

ω0
Σ0

(Ψ∗
0(F1)Ψ0(F2)) :=< 1]0,∞[(H)F1, F2 > . (IV.4)

More generally, a state ωβ,µΣ0
satisfies the (β, µ)-KMS condition, 0 < β, µ ∈ R,

if

ωβ,µΣ0
(Ψ∗

0(F1)Ψ0(F2)) :=< zeβH
(
1 + zeβH

)−1
F1, F2 >, z = eβµ. (IV.5)

We immediately associate a state ωβ,µU on U by (IV.1), (IV.3), (IV.5). In fact
ωβ,µU describes a double Gibbs equilibrium state : on the one hand, an ideal Fermi
particle gas with temperature 0 < T = β−1 and chemical potential µ, and on
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the other hand an ideal Fermi antiparticle gas with the same temperature T but
an opposite chemical potential −µ. If q is the charge of the particles, the charge
density of the gaz is (see Lemma A.2) :

9 =
1
π
qµ. (IV.6)

For sake of completeness, we present, in the Appendix, the details of the second
quantization of the Dirac field with a time-independent Hamiltonian.

We apply these procedures to our problem. First the quantization on M, the
space-time outside the collapsing star, is defined by choosing the foliation

Σt :=]z(t),∞[x×S2,

the Fock quantization and the Fock vacuum on Σ0 given by (IV.4) with H = H0.
In the past, this state is the so called Boulware vacuum that corresponds to the
familiar concept of an empty state for a static observer. Then the quantum ground
state on M is characterized by the two-point function for Φj ∈ C∞

0 (M,C4) :

ωM(Ψ∗(Φ1)Ψ(Φ2)) :=
〈
1]0,∞[(H0)

∫ ∞

−∞
U(0, t)Φ1(t)dt,

∫ ∞

−∞
U(0, t)Φ2(t)dt

〉
L2

0

.

(IV.7)

To describe the fields near the future Black-Hole horizon, we have introduced
the self-adjoint operator HBH on the stationary space-time MBH = Rt×Rx×S2.
The quantum fields ΨBH(Φ) for Φ ∈ C∞

0 (MBH ,C4) are constructed as before, by
taking the Fock quantization on Rx × S2 and S in (IV.2) equals to :

SBHΦ :=
∫ ∞

−∞
UBH(−t)Φ(t)dt. (IV.8)

According to the previous definitions, the two point function given for Φj ∈
C∞

0 (MBH ,C4) by :

ωβ,µBH(Ψ∗
BH(Φ1)ΨBH(Φ2)) :=

〈
zeβHBH

(
1 + zeβHBH

)−1
SBHΦ1, SBHΦ2

〉
L2

∞
,

z = eβµ, (IV.9)

defines a thermal state on A(MBH).
In fact it will be useful to split the fields into a part outgoing to infinity, and

a part falling into the black-hole, as t→ +∞, by putting for Ψ ∈ C4 :

P outΨ := (0,Ψ2,Ψ3, 0), P inΨ := (Ψ1, 0, 0,Ψ4), (IV.10)

and we have for F ∈ L2
∞ :[

eitHBHP outF
]

(x, ω) = e−iqA(r0)t
[
P outF

]
(x− t, ω),[

eitHBHP inF
]

(x, ω) = e−iqA(r0)t
[
P inF

]
(x + t, ω). (IV.11)
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We are mainly concerned with the subalgebra of outgoing local observables. Given
an open set O ⊂MBH

Aout(O) = C
∗ algebra generated by Ψ∗

BH(P outΦ1)ΨBH(P outΦ2),
Φj ∈ C∞

0 (O,C4). (IV.12)

We are interested in formulating the Hawking effect at the Black-Hole hori-
zon, in terms of KMS state on a local algebra. According to (II.23), the points of
the future horizon are reached at the infinity of the incoming radial null geodesics
{(t, x = −t + x0, ω), t ∈ R}. We introduce

Min :=
{

(t, x = −t + x0, ω), t ∈ R, 0 < x0, ω ∈ S2} (IV.13)

Then, given Φj
0 ∈ C∞

0 (Min,C4), the two point function of the ground state at the
horizon is characterized by

lim
T→∞

ωM
(
Ψ∗(Φ1

T )Ψ(Φ2
T )
)

where we put for T > 0 :

Φj
T (t, x, θ, ϕ) = Φj

0(t− T, x + T, θ, ϕ). (IV.14)

Theorem IV.1 (Main Result). Given Φj
0 ∈ C∞

0 (Min,C4) we have

lim
T→∞

ωM
(
Ψ∗(Φ1

T )Ψ(Φ2
T )
)

= ωβ,µBH

(
Ψ∗

BH(P outΦ1
0)ΨBH(P outΦ2

0)
)

+ω0
Σ0

(
Ψ∗

0(ΩBHSBHP inΦ1
0)Ψ0(ΩBHSBHP inΦ2

0)
)
, (IV.15)

with

β =
2π
κ0

, µ = qA(r0). (IV.16)

We remark that, near the horizon, the ground state ωM is asymptotically
equals, on Aout(Min), to a thermal state. Therefore this theorem expresses that
the ground state, that is the Boulware vacuum in the past, has exactly the structure
of the Unruh state near the future horizon (see e.g. [3], [18], [40]). According to
Lemma A.2, ωβ,µBH

(
Ψ∗

BH(P outΦ1
0)ΨBH(P outΦ2

0)
)

corresponds to a flux of particles
leaving the vicinity of the black hole, and streaming outwards. These outgoing
modes are thermally distributed with the Hawking temperature :

TBH =
κ0

2π
, (IV.17)
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and the charge density of the flux is equal to :

9BH =
1
π
q2A(r0). (IV.18)

Moreover, the state of outgoing modes is independent of the nature of the collapse,
and of the boundary condition : one need not worry about the exact history of the
collapse, or about interactions between the quantum field and the matter of the
star subsumed in the large class of boundary conditions (III.2), (III.6) (No Hair
result).
In the case of the Reissner-Nordstrøm Black-Hole created by a star of mass 0 < M
and charge Q, | Q |< M , we have :

TBH =

√
M2 −Q2

2π
(
M +

√
M2 −Q2

)2 , (IV.19)

9BH =
q2Q

π
(
M +

√
M2 −Q2

) . (IV.20)

An important fact is that Q and 9BH have the same sign, hence the black-hole
preferentially emits fermions whose charge is of same sign as its own charge, rather
than fermions of opposite charge.

V Discussion

In fact, the previous interpretation of the main result in terms of particles, is
relevant only for a static observer at infinity. In the framework of the curved
space-times, we have to be very carefull to describe a field with some ”particles”.
Such a description of the field crucially depends on how the ”particles” are defined
and detected, i.e. the description of some state, as a vacuum state, a thermal state,
etc., specifically depends on the choice of the observer.

We first consider a radially freely falling observer released from rest at infinity
in the distant past. Its radial velocity is V r = −(1 − F )

1
2 and he carries a nat-

ural orthonormal frame
(
F−1∂t + V r∂r, F

−1V r∂t + ∂r, r
−1∂θ, (r sin θ)−1∂ϕ

)
. On

the hand, the nature of the outgoing particles in the vicinity of the future horizon
is ill defined for such an observer, because (IV.16) and (A.57) show that the aver-
age wavelength of the emitted quanta is comparable with the size of the hole. In
some sense, this observer is inside these particles. On the other hand, a particle de-
tector (e.g. an Unruh box) will react to states which have positive frequency with
respect its propertime. Hence a geodesic detector freely falling across the future
horizon, will respond to the presence of ∂

∂U -positive frequency with U = T −X,
i.e. of the in-modes P inΦ. We conclude that the response of this detector is deter-
mined by ω0

Σ0

(
Ψ∗

0(ΩBHSBHP inΦ1
0)Ψ0(ΩBHSBHP inΦ2

0)
)
. (In fact, an Unruh box
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is a ”fluctuometer” and contains information both about the fluctuations of the
field and its own motion; see e.g. [10] and a lucid contribution by Unruh in [1]).
Finally an observer falling through the horizon will see no particles pouring out of
the collapsing star.

In opposite, a static observer at infinity defines the particles outgoing from the
black hole, as the positive frequency modes for ∂

∂V with V = T +X, which exactly
are the out-modes P outΦ. Therefore this observer interprets ωβ,µBH

(
Ψ∗

BH(P outΦ1
0)

ΨBH(P outΦ2
0)
)

as a thermal radiation of particle and anti-particles leaving the
black hole. We mention an alternative analysis based on the equivalence principle
[37] : an observer in free fall defines locally a field theory and a local vacuum
state that always look the same, just like flat space time field theory in an empty
local neighborhood; this quantum field theory and this vacuum state are viewed
by a static external observer as constantly redefined; the set of these local vacua
determines the global ground state, which is interpreted by the static observer as
an outgoing stream of particles.

In summary, the two terms in the right member of (IV.15), correspond to two
different kinds of particles that cannot be detected by the same observer. The in-
modes of the state ω0

Σ0

(
Ψ∗

0(ΩBHSBHP inΦ1
0)Ψ0(ΩBHSBHP inΦ2

0)
)

are detected
by the freely falling observer across the horizon, who cannot see the outgoing
modes. Nevertheless, the gravitational disturbance produced by the collapsing star,
actually induces the creation of an outgoing thermal charged flux of radiation, as
seen by a static observer at infinity. Our result (IV.15) completely agrees with the
analysis by Hawking [22] (see so [40]). We shall investigate, in a future work, a
more precise estimate of the response of the detectors, involving the computation
of the renormalized stress energy momentum tensor.

We now investigate the rather subtle role of the cosmological constant in
the case of the DeSitter-Reissner-Nordstrøm Black-Hole. The spherical black-hole
with mass M > 0, electric charge Q ∈ R, in an asymptotically flat universe
(cosmological constant Λ = 0), or expanding universe (Λ > 0), is described by the
DeSitter-Reissner-Nordstrøm metric

ds2 =
(

1− 2M
r

+
Q2

r2 −
Λ
3
r2
)
dt2 −

(
1− 2M

r
+

Q2

r2 −
Λ
3
r2
)−1

dr2 − r2(dθ2 + sin2 θdϕ2),

which, by the uniqueness theorem of Birkhoff, is the unique spherically symmetric
solution of the Einstein-Maxwell equations (with cosmological constant Λ ≥ 0) (see
e.g. [11]). Given M > 0 the mass of the black-hole, we deal with the radius of the
black-hole horizon r0(Q,Λ), the Surface Gravity at the black-hole horizon κ0(Q,Λ),
the Temperature of the quantum state at the horizon TBH(Q,Λ) and the Charge
Density of the gaz of particles and antiparticles outgoing from the black-hole to
infinity 9BH(Q,Λ). We could give the terrifying expressions of these quantities
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computed using some program of formal calculus (e.g. MAPLE is convenient).
It is more interesting to investigate their behaviours with respect to the charge
of the black-hole Q and the cosmological constant Λ. We deduce these results
from Theorem IV.1, (IV.17) and (IV.18), by elementary but tedious calculations
of expansions with respect to the small parameter.

V.1 Charged black-hole in an asymptotically flat universe (Reissner-
Nordstrøm Black-Hole)

It is the case where Λ = 0 and 0 ≤| Q |< M .

r0(Q, 0) = M +
√

M2 −Q2, (V.1)

κ0(Q, 0) =

√
M2 −Q2(

M +
√

M2 −Q2
)2 , (V.2)

TBH(Q, 0) =

√
M2 −Q2

2π
(
M +

√
M2 −Q2

)2 , (V.3)

9BH(Q, 0) =
q2Q

π
(
M +

√
M2 −Q2

) . (V.4)

We note that the radius of the black-hole and the temperature are decreasing
functions of | Q |∈ [0,M [, and we have :

TBH(Q, 0) = TBH(0, 0)− 1
128πM5Q

4 + O(Q6). (V.5)

V.2 Neutral black-hole in an expanding universe
(DeSitter-Schwarzschild Black-Hole)

It is the case where 0 < 9ΛM2 < 1 and Q = 0 (introduced by Kottler in 1918).

r0(0,Λ) =
2

Λ
1
2

cos
(

5π
3
− 1

3
arccos(3MΛ

1
2 )
)
, (V.6)

κ0(0,Λ) =
1

r2
0(0,Λ)

(3M − r0(0,Λ)), (V.7)

TBH(0,Λ) =
1

2πr2
0(0,Λ)

(3M − r0(0,Λ)), (V.8)

9BH(0,Λ) = 0. (V.9)
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We check that :

r0(0,Λ) =
3M
y

1 + y2
√

3 + y
,

with

y =
cos
(

1
3 arccos(3MΛ

1
2 )
)

√
1− cos2

(
1
3 arccos(3MΛ

1
2 )
) ∈]

√
3,∞[.

We deduce that the radius of the black-hole (resp. the temperature) is an increasing
(resp. decreasing) function of the cosmological constant Λ ∈]0, 1

9M2 [, and we have
:

2M < r0(0,Λ) < 3M. (V.10)

V.3 Weakly charged black-hole in an expanding universe

It is the case where Λ > 0 and | Q |→ 0.

r0(Q,Λ) = r0(0,Λ)− 1
2(3M − r0(0,Λ))

Q2 + O(Q4), (V.11)

κ0(Q,Λ) = κ0(0,Λ) +
3

2r3
0(0,Λ)

r0(0,Λ)− 2M
3M − r0(0,Λ)

Q2 + O(Q4), (V.12)

TBH(Q,Λ) = TBH(0,Λ) +
3

4πr3
0(0,Λ)

r0(0,Λ)− 2M
3M − r0(0,Λ)

Q2 + O(Q4), (V.13)

9BH(Q,Λ) =
q2Q

πr0(0,Λ)
+

q2Q3

2πr2
0(0,Λ)(3M − r0(0,Λ))

+ O(Q5). (V.14)

By (V.10) we see that a small charge of the black-hole decreases its radius as in
the Reissner-Nordstrøm case. But in opposite with (V.5), the temperature is an
increasing function of the charge near zero.

V.4 Black-hole in a weakly expanding universe

It is the case where 0 ≤| Q |< M and Λ → 0+. We obtain :

r0(Q,Λ) = r0(Q, 0) +

(
M +

√
M2 −Q2

)4

6
√

M2 −Q2
Λ + O(Λ2), (V.15)
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κ0(Q,Λ) = κ0(Q, 0) +
Λ

6
√

M2 −Q2

(
−4M2 − 4M

√
M2 −Q2 + 5Q2

)
+ O(Λ2),

(V.16)

TBH(Q,Λ) =

TBH(Q, 0) +
Λ

12π
√

M2 −Q2

(
−4M2 − 4M

√
M2 −Q2 + 5Q2

)
+ O(Λ2),

(V.17)

9BH(Q,Λ) = 9BH(Q, 0)


1−

(
M +

√
M2 −Q2

)3

6
√

M2 −Q2
Λ


+ O(Λ2). (V.18)

We constat that the radius of the black-hole is an increasing function of the
cosmological constant near zero, and the absolute value of the charge density is
decreasing. As regards the temperature, it appears that the ratio of the charge
with respect to the mass plaies a rather subtle role : if the charge of the black-hole
is not too large, more precisely

0 ≤| Q |<
√

24
25

M, (V.19)

the temperature is a decreasing function of Λ. But for a strongly charged black-
hole, i.e. √

24
25

M <| Q |< M, (V.20)

the temperature is an increasing function of Λ. For the critical value

| Q |=
√

24
25

M, (V.21)

we evaluate that

κ0

(
Q = ±

√
24
25

M,Λ

)
=

5
36M

− 324
125

M3Λ2 + O(Λ3), (V.22)

TBH

(
Q = ±

√
24
25

M,Λ

)
=

5
72πM

− 162
125π

M3Λ2 + O(Λ3), (V.23)

hence the temperature is decreasing with respect to Λ again. At our knowledge,
this phenomenon had not been previously noted.
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VI Proof of the asymptotic estimates

This part is devoted to the proofs of the results of Parts III and IV. Taking advan-
tage of the spherical invariance we reduce our 3D+1 problem to a 1D+1 problem.
Therefore the strategy consists in using the expansion in spinoidal spherical har-
monics.

It is well known (see e.g. [33] , [34]) that there exists two Hilbert bases
T l

1
2 ,n

(ϕ, θ), T l
− 1

2 ,n
(ϕ, θ) of L2(S2),

l ∈ N +
1
2
, n ∈ 1

2
Z, l− | n |∈ N, (VI.1)

such that :(
∂

∂θ
+

1
2 tan θ

)
T �
± 1

2 ,n
= ± n

sin θ
T �
± 1

2 ,n
− i

(
l +

1
2

)
T �
∓ 1

2 ,n
, (VI.2)

∂

∂ϕ
T �
± 1

2 ,n
= −inT �

± 1
2 ,n

. (VI.3)

Then we have[
L2(S2)

]4
=
⊕
�,n

L2
�,n, L2

�,n := CT �
− 1

2 ,n
⊕ CT �

+ 1
2 ,n
⊕CT �

− 1
2 ,n
⊕ CT �

+ 1
2 ,n

. (VI.4)

If we denote Πl,n the projector from
[
L2(S2)

]4 onto L2
�,n, a spin field Φ(t, x, ϕ, θ) is

solution of the Dirac equation (III.13) satisfying the boundary condition (III.14),
(III.6), iff u(t, x) given by

u(t, x) := eitqA(r0)ei
α�,n

2 γ5
Π�,n [Φ(t, x, .)] , (VI.5)

is solution of
∂u

∂t
+ L

∂u

∂x
+ iV�,nu = 0, t ∈ R, x > z(t), (VI.6)

∀t ∈ R, u2(t, x = z(t)) =

√
1 + ż(t)
1− ż(t)

u4(t, x = z(t)),

u3(t, x = z(t)) = −
√

1 + ż(t)
1− ż(t)

u1(t, x = z(t)), (VI.7)

Here L is the matrix

L =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 , (VI.8)
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and the potential is given by :

V�,n(x) = q(A−A(r0)) + mF
1
2




0 0 ieiα�,n 0
0 0 0 ieiα�,n

−ie−iα�,n 0 0 0
0 −ie−iα�,n 0 0




+
(
l +

1
2

)
F

1
2

r




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 . (VI.9)

Therefore we have transformed our 3D+1 problem into a family of 1D+1
simple problems (VI.6), where the potential V�,n has nice properties of asymptotic
behaviours as x→ ±∞. To get now the key estimate (III.34), it will be sufficient
to prove a similar asymptotic result for these 1D+1 problems (Theorem VI.5).

VI.1 One dimensional problem

We consider the mixed hyperbolic problem with unknown u =t (u1, u2, u3, u4) :

∂u

∂t
+ L

∂u

∂x
+ iV u = 0, t ∈ R, x > z(t), (VI.10)

∀t ∈ R, u2(t, x = z(t))=λ(t)u4(t, x = z(t)), u3(t, x = z(t)) = −λ(t)u1(t, x = z(t)),
(VI.11)

∀x > z(s), u(s, x) = f(x). (VI.12)

Here V is a matrix valued map of x satisfying :

V ∈ C1 (
Rx; C4×4) , (VI.13)

∀x ∈ R, V ∗(x) = V (x). (VI.14)

Moreover we assume the following asymptotic behaviours : there exists ε > 0,
C > 0, µ ≥ 0, 9 ∈ R and two hermitian matrices Γ, V∞ such that :∫ ∞

0
sup
x<−t

{| V (x) | + | V ′(x) |}dt <∞, (VI.15)

lim
x→+∞

V (x) = V∞, lim
x→+∞

d

dx
V (x) = 0, (VI.16)

V∞ = µΓ− 9Id, ΓL + LΓ = 0, Γ2 = Id, (VI.17)

and if µ > 0, there exists η ∈]0, 1] such that :

∀f ∈ C
4, f1 + f3 = f2 − f4 = 0 ⇒ i < ΓLf, f >C4≥ (η2 − 1) | f |2 . (VI.18)
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The boundary condition is given by functions λ(t) and z(t) satisfying :


z ∈ C2(R),
∀t ≤ 0, z(t) = z(0) < 0,
∀t ∈ R, −1 < ż(t) ≤ 0,
z(t) = −t−Ae−2κt + ζ(t), A > 0, κ > 0,
| ζ(t) | + | ζ̇(t) |= O(e−4κt), t −→ +∞,

(VI.19)

λ(t) :=

√
1 + ż(t)
1− ż(t)

. (VI.20)

We introduce the function spaces :

0 ≤ t, Lp
t := [Lp(]z(t),∞[x, dx)]4 , 1 ≤ p ≤ ∞, (VI.21)

Lp
∞ := [Lp(Rx, dx)]4 . (VI.22)

For s < t, Lp
s is naturally embedded in Lp

t ; this amounts to extending the function
by zero inside [z(t), z(s)]. For 0 ≤ t ≤ ∞ we denote ‖ . ‖ the L2

t norm and | . |∞
the norm in L∞

t . We consider some spaces of more regular data :

0 ≤ t ≤ ∞, k ∈ N
∗, Hk

t :=
{
f ∈ L2

t ;
dk

dxk
f ∈ L2

t

}
(VI.23)

and we denote ‖ . ‖k the norm of Hk
t defined by :

‖ f ‖k=

(∫ ∞

z(t)
| f(x) |2 + | dk

dxk
f(x) |2 dx

) 1
2

. (VI.24)

Thanks to the Sobolev embedding

H1
t ⊂

[
C0([z(t),∞[)

]4 ∩ L∞
t , (VI.25)

we can introduce the family of densely defined operators on L2
t :

HV,t := iL
d

dx
− V, (VI.26)

with domain

W 1
t :=

{
f ∈ H1

t ; f2(z(t)) = λ(t)f4(z(t)), f3(z(t)) = −λ(t)f1(z(t))
}
,W 1

∞ := H1
∞.

(VI.27)
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Lemma VI.1. The operator iHV,t is maximal accretive for any t, and skew-adjoint
for t ≤ 0 and t = ∞. Moreover the point spectrum of HV,∞ is empty.

Proof of Lemma VI.1. Let f be in W 1
t . Since the Sobolev inequality assures that

f ∈W 1
t ⇒ lim

x→∞
| f(x) |= 0, (VI.28)

an integration by part gives :

2! < iHV,tf, f >L2
t
=
(
λ2(t)− 1

)(
| f1(z(t)) |2 + | f4(z(t)) |2

)
= ż(t) | f(z(t) |2≤ 0,

(VI.29)

hence iHV,t is accretive. Now we easily check that its adjoint (iHV,t)
∗ is defined in

the sense of distributions by

(iHV,t)
∗ f = −iHV,tf,

with domain :

D
(
(iHV,t)

∗) =
{
f ∈ H1

t ; f2(z(t)) =
1

λ(t)
f4(z(t)), f3(z(t)) = − 1

λ(t)
f1(z(t))

}
.

Hence we have again :

2! < (iHV,t)
∗
f, f >L2

t
= ż(t) | f(z(t) |2≤ 0.

Since both iHV,t and its adjoint are accretive, we conclude that iHV,t is maximal
accretive and, if λ(t) = 1, skew-adjoint. In the same manner, HV,∞ is selfadjoint
on L2

∞. If u ∈ L2
∞ is an eigenvector of HV,∞ for the eigenvalue λ ∈ R, then

v(x) = e−iλLxu(x) is a solution in H1
∞ to :

v′(x) + iLeiλLxV e−iλLxv = 0.

Since v(x) → 0 as x → −∞, and
∫ 0
−∞ | V (x) | dx < ∞, we conclude by the

Gronwall lemma that v = 0. �
The solution of (VI.10), (VI.11), (VI.12), is formally expressed via a propa-

gator UV (t, s) :

u(t) = UV (t, s)f. (VI.30)

More precisely the mixed problem is solved by the following :

Proposition VI.2. For f ∈ W 1
s , there exists a unique solution u ∈ C1(Rt;L2

∞) of
(VI.10), (VI.11), (VI.12) satisfying for any real t :

u(t) ∈W 1
t . (VI.31)
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Moreover we have :

‖ u(t) ‖=‖ f ‖, (VI.32)

and UV (t, s) can be extended in an isometric strongly continuous propagator from
L2
s onto L2

t satisfying

∀f ∈W 1
s , (t �→ UV (t, s)f) ∈ C1 (

Rt, L
2
∞
)
,

d

dt
UV (t, s)f = iHV,tUV (t, s)f,

(VI.33)

∀f ∈ [C∞
0 (]z(s0),∞[)]4 ,

∃h>0, (s �→ UV (t, s)f)∈C1 (]s0 − h, s0 + h[, L2
t

)
,
d

ds
UV (t, s)f = −iUV (t, s)HV,sf,

(VI.34)

(
x > R⇒ f(x) = 0

)
⇒
(
x > R+ | t− s |⇒ [UV (t, s)f ](x) = 0

)
. (VI.35)

Proof of Proposition VI.2. The uniqueness follows from the conservation of the
norm (VI.32) which is established by evaluating

d

dt

∫ ∞

z(t)
| u(t, x) |2 dx = 2! < iHV,tu(t), u(t) >L2

t
−ż(t) | u(t, z(t)) |2= 0.

To prove the existence we introduce the operators :

R(t) :=




cos θ(t) 0 sin θ(t) 0
0 cos θ(t) 0 sin θ(t)

− sin θ(t) 0 cos θ(t) 0
0 − sin θ(t) 0 cos θ(t)


 , θ(t) := arctanλ(t),

T (t) : f ∈ L2
0 �→ T (t)f ∈ L2

t , [T (t)f ](x) = f(x− z(t) + z(0)).

We remark that
[R(t)]−1Ṙ(t) = −iθ̇(t)γ0,

T ∈ C1
(
Rt,L

([
C1

0 (Rx)
]4

,
[
C0

0 (Rx)
]4))

, Ṫ (t) = −ż(t)T (t)∂x.

Then u is a solution to the problem iff

w(t) = [R(t)]−1[T (t)]−1u(t)

is solution to
∂tw + A(t)w = 0, x > z(0),

w2(t, z(0)) = w3(t, z(0)) = 0,
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where
A(t) :=(

[R(t)]−1[T (t)]−1LR(t)T (t)− ż(t)
)
∂x − iθ̇(t)γ0 + i[R(t)]−1[T (t)]−1V R(t)T (t).

We can easily show that the operator A(t) with dense domain (independent of t)

D(A(t)) =
{
f ∈ H1

0 ; f2(z(0)) = f3(z(0)) = 0
}

is skew-adjoint on L2
0. Moreover, since z is C2 and V is uniformly continuous on

R, the map t �→ A(t) is norm continuous from R to L(D(A(0)), L2
0). Then the

Theorems of T. Kato [28] assure that there exists a unique strongly continuous
propagator S(t, s) on L2

0 such that :

w(t) = S(t, s)w(s),

and for f ∈ D(A(0)), S(t, s)f ∈ D(A(0)) is a strongly differentiable map from
Rt × Rs to L2

0 satisfying :

d

dt
S(t, s)f = −A(t)S(t, s)f,

d

ds
S(t, s)f = S(t, s)A(s)f.

Then the propagator defined by :

UV (t, s) = R(t)T (t)S(t, s)[R(s)]−1[T (s)]−1,

satisfies (VI.33) and (VI.34). To establish (VI.35) we check that :

d

dt

∫ ∞

R+|t−s|
| u(t, x) |2 dx =

−(| u2 |2 + | u3 |2)(t, R+t−s)1[0,∞[(t−s)+(| u1 |2+| u4 |2)(t, R+s−t)1[0,∞[(s−t).
�

It will be useful to have the explicit form of the free propagator U0(s, t) :

Lemma VI.3. For t ≤ s, given f ∈ L2
s, u(t) = U0(t, s)f is given by

x > z(t) ⇒ u2(t, x) = f2(x− t + s), u3(t, x) = f3(x− t + s), (VI.36)

x > s + z(s)− t⇒ u1(t, x) = f1(x + t− s), u4(t, x) = f4(x + t− s), (VI.37)

z(t)< x < s + z(s)− t⇒u1(t, x)= −

√
1− ż(τ(x + t))
1 + ż(τ(x + t))

f3(x + t + s− 2(τ(x + t))),

(VI.38)
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z(t) < x < s + z(s)− t⇒u4(t, x) =

√
1− ż(τ(x + t))
1 + ż(τ(x + t))

f2(x + t + s− 2(τ(x + t))),

(VI.39)

where function τ is the unique solution of

z(0) ≤ y < 0, z(τ(y)) + τ(y) = y, (VI.40)

and satisfies

τ(y) = − 1
2κ

ln(−y) +
1

2κ
ln(A) + O(y), y → 0−, (VI.41)

1 + ż(τ(y)) = −2κy + O(y2), y → 0−. (VI.42)

Proof of Lemma VI.3. (VI.36) and (VI.37) are consequences of (VI.10), (VI.12)
with V = 0. We have also by (VI.11) :

u1(4)(t, x) = u1(4)(τ(x+t), z(τ(x+t)))= −(+)
1

λ(τ(x + t))
u3(2)(τ(x+t), z(τ(x+t))).

Hence (VI.39) and (VI.38) follow from (VI.36). The properties of function τ are
established in [2], Proposition I.2. �

We denote U0(t) the unitary group on L2
∞ solving the Cauchy problem asso-

ciated with the hyperbolic system on R
2 :

∂u

∂t
+ L

∂u

∂x
= 0, t ∈ R, x ∈ R, (VI.43)

with infinitesimal generator

H0,∞ := iL∂x, D(H0,∞) = H1
∞. (VI.44)

We introduce the subspaces of the left and right propagating fields :

L2
in =

{
f ∈ L2

∞; f2 = f3 = 0, x < 0 ⇒ f(x) = 0,
}
, (VI.45)

L2
out =

{
f ∈ L2

∞; f1 = f4 = 0, x < 0 ⇒ f(x) = 0,
}
. (VI.46)

Proposition VI.4. Assume f ∈ L2
in. Then the strong limit :

Ωin
V f = lim

T→+∞
UV (0, T )U0(T )f in L2

0 (VI.47)

exists and defines an isometry from L2
in to L2

0.
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Proof of Proposition VI.4. Since UV (0, T ) and U0(T ) are isometric it is sufficient
to consider

f ∈ L2
in ∩ [C∞

0 (]0, R[)]4 .

For such a data we have

U0(T )f = U0(T, 0)f = f(T + .),

hence applying (VI.33), (VI.34) we obtain :

d

dT
(UV (0, T )U0(T )f) = UV (0, T )V U0(T )f,

and by (VI.15) we conclude that∫ ∞

0
‖ d

dT

(
UV (0, T )U0(T )f

)
‖ dT ≤

∫ ∞

−R

sup{| V (x) |; x < −T}dT <∞.

The result follows from the Cook’s method. �
We now state the main result of this part. Given f ∈ L2

∞ we denote

fT (x) = f(x + T ). (VI.48)

Theorem VI.5. For f ∈ L2
out we have :

lim
T→∞

‖ 1[+,∞[(HV,0)
(
UV (0, T )fT

)
‖2=< f, e

2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
f >L2

∞
.

(VI.49)

The proof is rather long and technical, so we begin by sketching the main
steps of the method. The idea consists in comparing UV (0, T )fT with f∗

T defined
by :

f∗
T (x) =



− | κx |− 1

2 f3(2T + 1
κ ln(−x)− 1

κ ln(A))
0
0

| κx |− 1
2 f2(2T + 1

κ ln(−x)− 1
κ ln(A))


 , (VI.50)

i.e. we rigorously justify the approximation of the geometrical optics.
We prove in Lemma VI.8 that U0(0, T )fT ∼ f∗

T . We explicitly calculate
‖ 1[0,∞[ (H0,0) f∗

T ‖ by Fourier transform in Lemma VI.6, and we show in Lemma
VI.7 that ‖ 1[+,∞[ (HV∞,0) f∗

T ‖ tends to the same limit. To replace 1[+,∞[ (HV∞,0)
by 1[+,∞[ (HV,0) we establish in Lemma VI.10 that the difference between these
both operators is compact. At last, we make the link with UV (0, T )fT and
U0(0, T )fT by using the fast decay of V as x→ −∞.
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Lemma VI.6. For f ∈ L2
out we have :

f∗
T ⇀ 0 in L2

0 − weak∗, T →∞, (VI.51)

moreover, for any T > 0 we have :

‖ f∗
T ‖=‖ f ‖, (VI.52)

‖ 1[0,∞[ (H0,0) f∗
T ‖2=< f, e

2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
f >L2

∞
. (VI.53)

Proof of Lemma VI.6. We may assume that f is smooth and compactly supported.
By the change of variables y = 2T + 1

κ ln(−x)− 1
κ ln(A) we directly obtain (VI.52)

and ∫
| f∗

T (x) | dx = e−κT
√
Aκ

∫
e

κ
2 y | f(y) | dy → 0, T →∞,

which implies (VI.51).
To prove the key identity (VI.53) we introduce a map P from L2

0 into L2
∞ by

putting for g = Pf :

x ≤ z(0) ⇒ g(x) = f(x), (VI.54)

x ≤ z(0) ⇒




g1(x) = −f3(2z(0)− x),
g2(x) = f4(2z(0)− x),
g3(x) = −f1(2z(0)− x),
g4(x) = f2(2z(0)− x).

(VI.55)

For f ∈W 1
0 we have :

L
d

dx
Pf = PL

d

dx
f. (VI.56)

Hence, using the Fourier transform F(ϕ) = ϕ̂, we see that H0,0 is unitarily equiv-
alent to the operator :

− ξ√
4π

L,

densely defined on the Hilbert space :

L2
∗ :=

{
f̂ ∈

[
L2(Rξ)

]4
; f̂1(ξ) + f̂3(−ξ) = f̂2(ξ)− f̂4(−ξ) = 0

}
.
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We have

1[0,∞[ (H0,0) = P−1F−1




1[0,∞[(ξ) 0 0 0
0 1]−∞,0](ξ) 0 0
0 0 1]−∞,0](ξ) 0
0 0 0 1[0,∞[(ξ)


FP.
(VI.57)

Hence :
2π ‖ 1[0,∞[ (H0,0) f∗

T ‖2=
∫ ∞

0
| F(f∗

T )(ξ) |2 dξ

= lim
ε→0+

Aκ

∫ ∞

0
|
∫ ∞

−∞
ei(A+iε)ζeκJy

e
κ
2 yf(y)dy |2 dζ

= lim
ε→0+

Aκ

2

∫
R×R

1
ε cosh

[
κ
2 (y1 − y2)

]
− iA sinh

[
κ
2 (y1 − y2)

]f(y1).f̄(y2)dy1dy2

(VI.58)

= lim
ε→0+

Aκ

4π

∫ ∞

−∞
| f̂(ξ) |2 F

(
1

ε cosh(κ2x)− iA sinh(κ2x)

)
(−ξ)dξ.

Now given ε �= 0, ξ < 0 and N > 0, M > 0, we evaluate∮
h(x)dx, h(x) :=

e−ixξ

ε cosh(κ2x)− iA sinh(κ2x)
,

along the path

{−N ≤ !x ≤ N, %x = 0,M} ∪ {0 ≤ %x ≤M, !x = ±N}.

First we have :
∫ ±N+iM

±N

h(x)dx

 ≤ Ce−
κ
2N

∫ ∞

0
exξdx→ 0, N →∞,


∫ N+iM

−N+iM

h(x)dx

 ≤ CeMξ

∫ ∞

−∞
e−

κ
2 |x|dx→ 0, M →∞.

We deduce that ∫ ∞

−∞
h(x)dx = 2iπ

∞∑
n=1

ρn(ε)

where ρn(ε) are the residues of h(x) at the poles zn(ε) ∈ {z ∈ C;%z > 0}. We
easily check that :

zn(ε) =
2i
κ

(
nπ − arctan(

ε

A
)
)
,

sup
1≤n

| ρn(ε)− 2i
Aκ

(−1)ne
2nπ
κ ξ |≤ Cε,
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hence we get that for ξ < 0 we have :F
(

1
ε cosh(κ2x)− iA sinh(κ2x)

)
(ξ)− 4π

Aκ
e

2π
κ ξ
(

1 + e
2π
κ ξ
)−1

 ≤ Cε.

In the same manner, for ξ > 0, we choose M < 0 and considering the poles
zn(ε) ∈ {z ∈ C;%z < 0} we obtain :

∫ ∞

−∞
h(x)dx = 2iπ

−∞∑
n=0

ρn(ε),

sup
n≤0

| ρn(ε)− 2i
Aκ

(−1)ne−
2nπ
κ ξ |≤ Cε,

F
(

1
ε cosh(κ2x)− iA sinh(κ2x)

)
(ξ)− 4π

Aκ

(
1 + e−

2π
κ ξ
)−1

 ≤ Cε.

Finally we conclude that :

F
(

1
0− iA sinh(κ2x)

)
(ξ) =

4π
Aκ

e
2π
κ ξ
(

1 + e
2π
κ ξ
)−1

, (VI.59)

and
‖ 1[0,∞[ (H0,0) f∗

T ‖2=

1
2π

∫ ∞

−∞
e−

2π
κ ξ
(

1 + e−
2π
κ ξ
)−1

| f̂(ξ) |2 dξ =< f, e
2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
f >L2

∞
.

�

Lemma VI.7. For f ∈ L2
out, we have :∣∣‖ 1[+,∞[ (HV∞,0) f∗
T ‖ − ‖ 1[0,∞[ (H0,0) f∗

T ‖
∣∣→ 0, T →∞. (VI.60)

Proof of Lemma VI.7. We have :

1[+,∞[ (HV∞,0) = 1[0,∞[ (HµΓ,0) . (VI.61)

We consider the case µ > 0. We introduce the self-adjoint operators on L2
∞ :

HµΓ := iL∂x − µΓ, D(HµΓ) = H1
∞, (VI.62)

KµΓ := H
−
µΓ,0 ⊕HµΓ,0, D(KµΓ,0) = D(H−

µΓ,0)⊕D(HµΓ,0), (VI.63)
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where H
−
µΓ,0 is the self-adjoint operator on

[
L2(−∞, z(0))

]4 defined by :

H
−
µΓ,0 := iL∂x − µΓ, (VI.64)

D(H−
µΓ,0) =

{
f ∈

[
L2(−∞, z(0))

]4
; f ′ ∈

[
L2(−∞, z(0))

]4
,

f1(z(0)) = f3(z(0)), f2(z(0)) = −f4(z(0))} . (VI.65)

We have :

0⊕ 1[0,∞[ (HµΓ,0) (f∗
T ) = 1[0,∞[ (KµΓ) (0⊕ f∗

T ) . (VI.66)

For f ∈ D(HµΓ) we evaluate :

‖ HµΓf ‖2=‖ f ′ ‖2 +µ2 ‖ f ‖2,

and for f ∈ D(HµΓ,0) we get :

‖ HµΓ,0f ‖2=‖ f ′ ‖2 +µ2 ‖ f ‖2 +iµ < ΓLf(z(0)), f(z(0)) >C4 .

We deduce from (VI.18) that :

∀f ∈ D(KµΓ), ‖ KµΓf ‖≥ µη ‖ f ‖ .

Hence choosing χ ∈ C∞(R), such that :

t ≤ 0 ⇒ χ(t) = 0, µη ≤ t⇒ χ(t) = 1,

we have :
1[0,∞[(HµΓ) = χ(HµΓ), 1[0,∞[(KµΓ) = χ(KµΓ).

We remark that
(HµΓ + i)−1 − (KµΓ + i)−1

is of finite rank, thus compact on L2
∞. Hence by the Weyl criterion (see e.g. [15],

Theorem B.1.1) the operator

1[0,∞[(HµΓ)− 1[0,∞[(KµΓ) = χ(HµΓ)− χ(KµΓ) is compact. (VI.67)

Then we deduce from (VI.51), (VI.61), (VI.66) that :

‖ 0⊕ 1[+,∞[ (HV∞,0) (f∗
T )− 1[0,∞[ (HµΓ) (0⊕ f∗

T ) ‖→ 0, T →∞. (VI.68)

We calculate this last projector using the Fourier transform :

1[0,∞[ (HµΓ) = F−1

(
1
2
− 1

2
√
ξ2 + µ2

(ξL + µΓ)

)
F ,

F (f∗
T ) (ξ) =

√
κAe−κTϕ

(
Ae−2κT ξ

)
, ϕ(ζ) :=

∫ ∞

−∞
eiζe

κy

e
κ
2 yf(y)dy.
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We obtain :

‖
(
1[0,∞[ (H0,∞)− 1[0,∞[ (HµΓ)

)
(0⊕ f∗

T ) ‖2

≤ C

∫ 

∣∣∣∣∣ ζ√

ζ2 + A2e−4κTµ2
− ζ

| ζ |

∣∣∣∣∣
2

+
1

e4κT ζ2 + a2µ2


 | ϕ(ζ) |2 dζ

−→ 0, T →∞.

(VI.69)

Since (f∗
T )2 = (f∗

T )3 = 0 we have :

‖ 1[0,∞[ (H0,∞) (0⊕ f∗
T ) ‖2=

1
2π

∫ ∞

0
| F (f∗

T ) (ξ) |2 dξ =‖ 1[0,∞[ (H0,0) f∗
T ‖2,

(VI.70)

hence (VI.60) follows from (VI.68), (VI.69) and (VI.70). �

Lemma VI.8. For f ∈ L2
out we have :

‖ U0(0, T )fT − f∗
T ‖→ 0, T →∞, (VI.71)

U0(0, T )fT ⇀ 0 in L2
0 − weak∗, T →∞. (VI.72)

Proof of Lemma VI.8. Given ε > 0 we choose g ∈ L2
out, continuous, compactly

supported in [0, R] such that
‖ f − g ‖≤ ε.

Then for any T > 0 we have
‖ f∗

T − g∗T ‖≤ ε,

hence we need to prove that :

‖ U0(0, T )gT − g∗T ‖→ 0, T →∞.

Thanks to Lemma VI.3 we have for T > (R− z(0))/2 :[
U0(0, T )gT

]
2 (x) =

[
U0(0, T )gT

]
3 (x) = 0,[

U0(0, T )gT
]
1(4) (x) =

−(+)

√
2 + 2κx + O(x2)
−2κx + O(x2)

g3(2)

(
x + 2T +

1
κ

ln(−x)− 1
κ

ln(A) + O(x)
)
.

We deduce that :

‖ U0(0, T )gT − g∗T ‖2= κ

∫ ∞

∞
| g
(
y + O

(
eκy−2κT ))− g(y) |2 dy → 0, T →∞,

and (VI.72) follows from (VI.51) and (VI.71). �
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We prove now a result of H1-regularity of the solution. We essentially show
that the polarized wave front set propagates according to the Hamilton flow and
the usual law of reflection of singularities on the moving boundary. If the data of
our problem, V (x) and z(t) were C∞, we could invoke the deep general theorems
of Ivrĭı [25]. Since V and z are less regular, we prefer to give an elementary proof
for the solution of our simple system. We introduce the unitary group on L2

∞
associated with HV,∞ :

UV (t) := eitHV,∞ . (VI.73)

Lemma VI.9. For f ∈ L2
∞ satisfying

f2 = f3 = 0,

x < a⇒ f(x) = 0,

we have for any T > 0 :

‖ 1{x<a+T}(x)∂x [UV (−T )f ] (x) ‖≤ CT ‖ f ‖ . (VI.74)

Moreover, if z(T ) < a, we have :

‖ 1{x<a+T}(x)∂x [UV (0, T )f ] (x) ‖≤ CT ‖ f ‖ . (VI.75)

Proof of Lemma VI.9. We denote u(t, x) :=[UV (t)f ] (x), and for g =t (g1, g2, g3, g4),
we put :

[g]14 =t (g1, 0, 0, g4), [g]23 =t (0, g2, g3, 0).

We have :

(∂t − ∂x)[u]14 + i[V u]14 = 0, x < a⇒ [u]14(0, x) = 0 (VI.76)

(∂t + ∂x)[u]23 + i[V u]23 = 0, [u]23(0, .) = 0. (VI.77)

We get for all x :
[∂xu]23(−T, x) =

i

∫ 0

−T

[V ′u]23(s, x+s+T )+[V [∂xu]14]23(s, x+s+T )+[V [∂xu]23]23(s, x+s+T )ds.

We deduce from (VI.76) that :

[∂xu]14(s, x + s + T ) =
1
2
d

ds
[u(s, x + s + T )]14 +

i

2
[V u]14(s, x + s + T ),
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hence integration by parts gives :

[∂xu]23(−T, x)

=
i

2
[V (x + T )[f(x + T )]14]23 −

i

2
[V (x)[u(−T, x)]14]23

+ i

∫ 0

−T

(
[V ′u]23 +

i

2
[V [V u]14]23 −

1
2

[V ′[u]14]23 + [V [∂xu]23]23

)
(s, x + s + T )ds.

Since UV (t) is unitary and V and V ′ are bounded, we get :

‖ [∂xu]23(−T ) ‖≤ C(1 + T ) ‖ f ‖ +C

∫ 0

−T

‖ [∂xu]23(s) ‖ ds,

and we conclude by the Gronwall Lemma that :

‖ [∂xu]23(−T ) ‖≤ CT ‖ f ‖ . (VI.78)

On the other hand we deduce from (VI.76) that for x < a + T we have :

[∂xu]14(−T, x)

= i

∫ 0

−T

([V ′u]14 + [V [∂xu]23]14 + [V [∂xu]14]14) (s, s− s− T )ds.

Then we deduce from (VI.78) that

‖ 1{x<a+T}[∂xu]14(−T ) ‖≤ C(T ) ‖ f ‖ +C

∫ 0

−T

‖ 1{x<a−s}[∂xu]14(s) ‖ ds,

hence using one more the Gronwall Lemma we obtain :

‖ 1{x<a+T}[∂xu]14(−T ) ‖≤ CT ‖ f ‖ . (VI.79)

and (VI.74) is established. To prove (VI.75) we choose α, β ∈ R, χ ∈ C∞(R)
satisfying :

z(T ) + T < α < β < a + T, x ≤ α⇒ χ(x) = 0, x ≥ β ⇒ χ(x) = 1,

and we define :

v(t, x) = [UV (t, T )f ] (x)− χ(x + t) [UV (t− T )f ] (x).

v is a solution to

v(T, x) = 0, x > z(t) ⇒ ∂tv(t, x) = iHV,tv(t, x) + h(t),

v2(t, z(t)) = λ(t)v4(t, z(t)), v3(t, z(t)) = −λ(t)v1(t, z(t)),
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with
h(t, x) := χ′(x + t)L [UV (t− T )f ] (x).

(VI.74) implies that :

h(t) ∈ D(HV,t), sup
0≤t≤T

‖ h(t) ‖H1
∞
≤ CT ‖ f ‖ .

Whence

v(t) =
∫ t

T

UV (t, s)h(s)ds ∈ H1
t , sup

0≤t≤T
‖ v(t) ‖H1

t
≤ C ′

T ‖ f ‖,

and we get (VI.75) using (VI.74) again. �

Lemma VI.10. The operator

1[+,∞[(HV,0)− 1[+,∞[(HV∞,0) (VI.80)

is compact on L2
0.

Proof of Lemma VI.10. We have :

1[+,∞[(HV,0)− 1[+,∞[(HV∞,0) = 1[0,∞[(H1)− 1[0,∞[(H2),

H1 := HV++Id,0, H2 := HµΓ,0.

The identities :
a ∈ R

∗,
a

| a | =
∫ ∞

0

a√
πt

e−a2tdt,

0 ≤ t, e−a2t = − 1
2iπ

∮
γ

e−z

a2t− z
dz,

where γ is the path in the complex plane given by :

γ =
{
z = eiθ;

π

2
< θ <

3π
2

}
∪ {z = α± i; 0 ≤ α} ,

yield :
1[0,∞[(H1)− 1[0,∞[(H2) =

i

4π
3
2

∫ ∞

0

(∮
γ

e−z
[
H1
(
tH2

1 − z
)−1 −H2

(
tH2

2 − z
)−1

]
dz

)
dt√
t
. (VI.81)

We have :
H2 = H1 + V1, V1 := V + 9Id− µΓ,

H
2
2 = H

2
1 + W, W := µ2Id− (V + 9)2 + iLV ′ + i[L(V + 9) + (V + 9)L]∂x,
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and by (VI.16), (VI.17) :

| V1(x) | + | µ2Id− (V (x) + 9)2 + iLV ′(x) |

+ | L(V (x) + 9) + (V (x) + 9)L |→ 0, x→∞. (VI.82)

For t > 0, z ∈ γ we consider :

A(t, z) := H1
(
tH2

1 − z
)−1 −H2

(
tH2

2 − z
)−1

=
(
tH1

(
tH2

1 − z
)−1

)(
W
(
tH2

2 − z
)−1

)
− V1

(
tH2

2 − z
)−1

.

Since
(
tH2

2 − z
)−1 is bounded from L2

0 to H2
0 , the Sobolev embedding and the decay

estimates (VI.82) imply that W is compact from H2
0 to L2

0 and
(
W
(
tH2

2 − z
)−1

)
and V1

(
tH2

2 − z
)−1 are compact on L2

0. Since
(
tH1

(
tH2

1 − z
)−1

)
is bounded on

L2
0 we conclude that A(t, z) is compact on L2

0. Now to prove the Lemma, it suffices
to establish that

| e−z |√
t
‖ A(t, z) ‖L(L2

0)∈ L1(R+
t × γz). (VI.83)

On the one hand :

‖ Hj

(
tH2

j − z
)−1 ‖L(L2

0)≤ sup
λ∈R

| λ(tλ2 − z)−1 |= 1√
2t(| z | −!z)

≤ 1
2
√
t
,

(VI.84)

hence

0 < t, z ∈ γ, ‖ A(t, z) ‖L(L2
0)≤

1
t
. (VI.85)

On the other hand we write :

A(t, z) = t
(

H1
(
tH2

1 − z
)−1

)
W
(
tH2

2 − z
)−1 − V1

(
tH2

2 − z
)−1

.

We have :
0 < t, z ∈ γ, ‖

(
tH2

2 − z
)−1 ‖L(L2

0)≤ 1,

and we deduce from (VI.84) that :

‖
(
tH2

2 − z
)−1 ‖L(L2

0,H
1
0 )≤ 1 +

1√
t
.

Since W ∈ L(H1
0 , L

2
0) we get :

0 < t, z ∈ γ, ‖ A(t, z) ‖L(L2
0)≤ C(1 +

√
t), (VI.86)
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where C > 0 does not depend on t > 0, z ∈ γ. Therefore (VI.85), (VI.86) yield

sup
z∈γ

‖ A(t, z) ‖L(L2
0)≤

2C
1 + t

,

and (VI.83) is established �

Proof of Theorem VI.5. For 0 < tε < T we write

UV (0, T )fT = OT (ε) + UV (0, tε)gε,T , (VI.87)

with

OT (ε) := UV (0, tε) (UV (tε, T )− U0(tε, T )) fT , gε,T := U0(tε, T )fT .

If f is supported in [0, R], then UV (s, T )fT is supported in [z(s),−s + R], hence

‖ OT (ε) ‖≤
∫ T

tε

‖ V UV (s, T )fT ‖ ds ≤‖ f ‖
∫ ∞

tε

sup{| V (x) |;x ≤ −s + R}ds.

Then, given ε > 0, we choose tε such that :

sup
T≤tε

‖ OT (ε) ‖≤ ε. (VI.88)

Now for r ≥ 0 we define θr,T as the unique solution to

z(θr,T )− θr,T = r − 2T.

By Lemma VI.3 we have :

θr,T = T − r

2
+ O(e−2κT ), (VI.89)

and for 0 ≤ tε ≤ θR,T , gε,T is supported in [2(θ0,T −T )−tε, 2(θR,T −T )+R−tε] ⊂
[−tε −O(e−2κT ),−tε] and [gε,T ]23 = 0. We introduce the function Yε given by

x < z(tε) + tε ⇒ Yε(x) = 0, z(tε) + tε ≤ x⇒ Yε(x) = 1.

The compact embedding H1 ⊂ L2 with (VI.72) and Lemma VI.9, assure that :

‖ (1− Yε)UV (0, tε)gε,T ‖→ 0, T →∞, (VI.90)

‖ (1− Yε)UV (−tε)gε,T ‖→ 0, T →∞. (VI.91)

We remark that :
YεUV (0, tε)gε,T = YεUV (−tε)gε,T .
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Therefore, thanks to (VI.88), (VI.90), it is sufficient to prove that :

lim
T→∞

‖ 1[+,∞[(HV,0) (YεUV (−tε)gε,T ) ‖2=< f, e
2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
f >L2

∞
.

(VI.92)

In the sequel, we write u ∼ v for u, v ∈ C0(RT , L
2
∞) iff ‖ u(T )− v(T ) ‖→ 0 when

T → ∞. Since (VI.72) implies that YεUV (−tε)gε,T tends weakly to 0 in L2
0, we

deduce from Lemma VI.10 and (VI.61) that :

1[+,∞[(HV,0) (YεUV (−tε)gε,T ) ∼ 1[0,∞[(HµΓ,0) (YεUV (−tε)gε,T ) . (VI.93)

We have also :

0⊕ 1[0,∞[(HµΓ,0) (YεUV (−tε)gε,T ) = 1[0,∞[(KµΓ) (YεUV (−tε)gε,T ) . (VI.94)

We deduce from (VI.67) that :

1[0,∞[(KµΓ) (YεUV (−tε)gε,T ) ∼ 1[0,∞[(HµΓ) (YεUV (−tε)gε,T ) , (VI.95)

and with (VI.91) :

1[0,∞[(HµΓ) (YεUV (−tε)gε,T ) ∼ 1[0,∞[(HµΓ) (UV (−tε)gε,T ) . (VI.96)

We introduce a potential Vε on R given by :

x ≥ −2tε ⇒ Vε(x) = V (x), x ≤ −2tε ⇒ Vε(x) = V (2tε − x).

Then the finite speed of propagation implies that :

UVε(−tε)gε,T = UV (−tε)gε,T .

Now putting H1 := HVε++Id, H2 := HµΓ in the proof of Lemma VI.10, we get that
1[0,∞[(HµΓ)− 1[+,∞[(HVε) is compact on L2

∞. Then we obtain :

1[0,∞[(HµΓ) (UV (−tε)gε,T ) ∼ 1[+,∞[(HVε)UVε(−tε)gε,T . (VI.97)

We remark that :

‖ 1[+,∞[(HVε)UVε(−tε)gε,T ‖=‖ 1[+,∞[(HVε)gε,T ‖, (VI.98)

and by the previous argument, we have again :

1[+,∞[(HVε)gε,T ∼ 1[0,∞[(HµΓ)gε,T . (VI.99)

Now (VI.71) implies :
gε,T ∼ U0(tε)f∗

T
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Since U0(tε)f∗
T (x) = f∗

T (x + tε) and HµΓ commutes with ∂x, we have

‖ 1[0,∞[(HµΓ)U0(tε)f∗
T ‖=‖ 1[0,∞[(HµΓ)f∗

T ‖

and we get with (VI.69), (VI.70) and Lemma VI.53 that :

‖ 1[0,∞[(HµΓ)gε,T ‖→< f, e
2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
f >L2

∞
, T →∞. (VI.100)

We conclude that (VI.92) is a consequence of (VI.93) to (VI.100). �

Corollary VI.11. Given fout ∈ L2
out, fin ∈ L2

in, we have for J = [9,∞[ or J =
]9,∞[ :

lim
T→∞

‖ 1J(HV,0)UV (0, T )
(
fTout + fTin

)
‖2

=< fout, e
2π
κ H0,∞

(
1 + e

2π
κ H0,∞

)−1
fout >L2

∞

+ ‖ 1J(HV,0)
(
Ωin
V fin

)
‖2 .

(VI.101)

Proof of Corollary VI.11. Since (VI.72) implies that gε,T tends weakly to 0 in L2
tε

as T →∞, (VI.87) and (VI.88) assure that

UV (0, T )fTout ⇀ 0 in L2
0 − weak∗, T →∞, (VI.102)

and because 1{0}(HV,0) is finite rank, we have :

lim
T→∞

‖ 1{0}(HV,0)UV (0, T )fTout ‖= 0.

Then, using :
UV (0, T )fTin = UV (0, T )U0(T )fin,

the result follows from (VI.102), Proposition VI.4 and Theorem VI.5. �

VI.2 Proofs of the asymptotic estimates

At present we are able to investigate the 3D+1 problem, so we return to the proofs
of the results of Part III and IV.
Proof of Lemma III.1.

For 0 ≤ t ≤ ∞, we expand Φ ∈ L2
t in the following way :

Φ =
∑
�,n

e−i
α�,n

2 γ5




u�1,n(x)T �
− 1

2 ,n
(ϕ, θ)

u�2,n(x)T �
+ 1

2 ,n
(ϕ, θ)

u�3,n(x)T �
− 1

2 ,n
(ϕ, θ)

u�4,n(x)T �
+ 1

2 ,n
(ϕ, θ)


 , (VI.103)
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and we introduce :

Il,n : Φ ∈ L2
t �−→




u�1,n(x)
u�2,n(x)
u�3,n(x)
u�4,n(x)


 ∈ L2

t , (VI.104)

R�,n :




u�1,n
u�2,n
u�3,n
u�4,n


 ∈ L2

t �−→ e−i
α�,n

2 γ5




u�1,n(x)T �
− 1

2 ,n
(ϕ, θ)

u�2,n(x)T �
+ 1

2 ,n
(ϕ, θ)

u�3,n(x)T �
− 1

2 ,n
(ϕ, θ)

u�4,n(x)T �
+ 1

2 ,n
(ϕ, θ)


 ∈ L2

t .

We make the link with the study of the one dimensional problem in the previous
section by putting :

L2
t =

⊕
�,n

R�,nL
2
t , Ht =

⊕
�,n

R�,n

(
HV�,n,t − qA(r0)Id

)
I�,n, (VI.105)

where HV�,n,t is given by (VI.26) and (VI.9). We note that the hypotheses (VI.13)
to (VI.18) are satisfied for the choices :

κ = κ0, µ = m
√

F (r+), 9 = qA(r0), η = inf(1,
√

1 + cosα�,n), (VI.106)

Γ =




0 0 ieiα�,n 0
0 0 0 ieiα�,n

−ie−iα�,n 0 0 0
0 −ie−iα�,n 0 0


 . (VI.107)

Hence the result follows from Lemma VI.1, in particular we have

2!〈iHtΦ,Φ〉 = ż(t) ‖ Φ(z(t), .) ‖2L2(S2) . (VI.108)

�
Proof of Proposition III.2. The conservation law (III.23) is a consequence of
(VI.108), and the existence of the solution is obtained by taking :

U(t, s) = ei(s−t)qA(r0)
⊕
�,n

R�,nUV�,n
(t, s)I�,n. (VI.109)

Then the result follows from Proposition VI.2. �
Proof of Proposition III.3. We remark that :

L2
BH =

⊕
�,n

R�,nL
2
in, L2

out =
⊕
�,n

R�,nL
2
out, (VI.110)
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HBHΦ =
⊕
�,n

R�,n

(
H0,∞ − qA(r0)Id

)
I�,n, UBH(t) = e−iqA(r0)t

⊕
�,n

R�,nU0(t)I�,n.

(VI.111)

Therefore, since

U(0, T )UBH(T ) =
⊕
�,n

R�,nUVl,n
(0, T )U0(T )I�,n,

the existence of the wave operator follows from Proposition VI.4 by putting :

ΩBH =
⊕
�,n

R�,nΩin
V�,n
I�,n. (VI.112)

�
Proof of Theorem III.4. We apply Corollary VI.11 and the dominated convergence
theorem to get :

‖ 1J(H0)U(0, T )
(
ΦT
out + ΦT

BH

)
‖2

=
∑
�,n

‖ 1J(HV�,0)UV�,n
(0, T )

(
I�,nΦT

out + I�,nΦT
BH

)
‖2

−→
T→∞

∑
�,n

< I�,nΦout, e
2π
κ0

H0,∞
(

1 + e
2π
κ0

H0,∞
)−1

I�,nΦout >L2
∞

+ ‖ 1J (HV�,n,0)
(

Ωin
V�,n
I�,nΦBH

)
‖2

=< Φout, ζe
2π
κ0

HBH

(
1 + ζe

2π
κ0

HBH

)−1
Φout >L2

∞

+ ‖ 1J (H0) (ΩBHΦBH) ‖2 .

�
Proof of Theorem IV.1. By the identity of polarization it is sufficient to consider
Φ1

0 = Φ2
0 = Φ0 and we assume that :

suppΦ0 ⊂
{

(t, x, ω) ∈ [−R,+R]× [0, R]× S2; 0 < x + t
}
.

For T > 0 we introduce the map

TT : F ∈ L2
∞ �−→ (TTF ) (x, ω) = F (x + T, ω).

Lemma VI.12.

‖
∫ R

−R

U(T + R,T + t)TTΦ0(t)dt

−TT+R

(
e+iqA(r0)RUBH(2R)SBHP outΦ0

+e−iqA(r0)RSBHP inΦ0

)
‖L2

R+T
−→ 0, T →∞. (VI.113)
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Proof of Lemma VI.12. We write by using (VI.109) :

∫ R

−R

U(T + R,T + t)TTΦ0(t)dt =

∑
�,n

R�,n

∫ R

−R

eiqA(r0)(t−R)UV�,n
(T + R,T + t)I�,nTTΦ0(t)dt,

and we get by (VI.111) and (IV.11) :

TT+R

(
e+iqA(r0)RUBH(2R)SBHP outΦ0 + e−iqA(r0)RSBHP inΦ0

)
=

∑
�,n

R�,n

∫ R

−R

eiqA(r0)(t−R)U0(R− t)I�,nTTΦ0(t)dt.

The hypothesis on the support of Φ implies that :

UV�,n
(T + R,T + t)I�,nTTΦ0(t) = UV�,n

(R− t)I�,nTTΦ0(t),

and the Duhamel formula with (II.11) assures that :

‖ UV�,n
(R− t)I�,nTTΦ0(t)− U0(R− t)I�,nTTΦ0(t) ‖L2

∞
≤ C(R,Φ)e−κ0T .

Hence we easily deduce (VI.113). �

To prove the Theorem, we get by (IV.7), Theorem III.4, Lemma VI.12, (IV.9)
and (IV.4) :

ωM (Ψ∗
T (ΦT )ΨT (ΦT ))

=‖ 1]0,∞[(H0)
∫ ∞

−∞
U(0, t)ΦT (t)dt ‖2

=‖ 1]0,∞[(H0)U(0, T + R)
∫ ∞

−∞
U(T + R, t + T )TTΦ0(t)dt ‖2

−→
T→∞

< SBHP outΦ0, e
2π
κ0

qA(r0)e
2π
κ0

HBH

(
1 + e

2π
κ0

qA(r0)e
2π
κ0

HBH

)−1
SBHP outΦ0 >L2

∞

+ ‖ 1]0,∞[(H0)
(
ΩBHP inSBHΦ0

)
‖2

= ω
2π
κ0

,qA(r0)
BH

(
Ψ∗

BH(P outΦ0)ΨBH(P outΦ0)
)

+ ω0
Σ0

(
Ψ∗

0(ΩBHP inSBHΦ0)Ψ0(ΩBHP inSBHΦ0)
)
.

�
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VII Conclusion

We have considered a charged Dirac field outside a spherical charged star, sta-
tionary in the past and collapsing to a black hole in the future. The interaction
between the field and the matter of the star is subsumed in a boundary condi-
tion belonging to a large class. We have rigorously established the famous result
on the thermalization of the vacuum by the collapse : if the ground quantum
state in the past is the Boulware vacuum, then, this state becomes of Unruh type
near the future black-hole horizon. Moreover the temperature and the chemical
potential are independent of the history of the collapse and of the boundary con-
dition (in the class that we introduced). A static observer at infinity interprets
this state as a stream of particules and antiparticles outgoing from the black hole
to infinity. Furthermore, the black-hole preferentially emits fermions whose charge
is of same sign as its own charge, rather than fermions of opposite charge. We
have investigated the rather subtle role of the cosmological constant in the case
of the DeSitter-Reissner-Nordstrøm Black-Hole : in the case of a weakly charged
black hole in an expanding universe, the temperature is an increasing function of
the charge, unlike the asymptotically flat case; in the case of a strongly charge,
24M2 < 25Q2 < 25M2, the temperature is an increasing function of the cosmo-
logical constant. We have only studied the two-point function which carries the
information on the vacuum fluctuations. A subsequent work will be devoted to the
investigation of the stress energy momentum tensor. Another interesting problem
consists in treating the matter of the star (fluid or dust) instead of considering a
boundary condition.

It goes without saying that we leave open the huge problem of the back
reaction of this vacuum polarization on the metric, nevertheless we make some
comments on the subject. The previous remarks suggest that the black-hole loses
mass and charge [8]. Since the propagator of the Dirac system is unitary, there
is no supperadiance of fermion fields [12], despite the existence of the generalized
ergosphere for classical particles [14]. Therefore we may expect that the rate of
the spontaneous loss of charge of the black-hole through charged fermion fields,
is weak in the semiclassical regime, unlike the scalar case for wich supperradiant
modes appear [21]. All these conjectures require the solution of monstrously non
linear problems.

A Second Quantization of the Dirac Fields

To be able to construct the Boulware vacuum in the past, and the thermal state
at the horizon, we describe here the essential features of the quantization of the
Dirac field, convenient for the stationary space-times (for more details in the case
of the flat space, see e.g. [6],[7],[9],[23],[38],[39]).

We first consider the case of one kind of non interacting fermions. Let h be a
complex Hilbert space (the one-fermion space), and we denote <,> its scalar prod-
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uct, linear with respect to the first argument. We define the space of n-fermions
as the antisymmetric n-tensor product of h :

F
(0)(h) := C, 1 ≤ n⇒ F

(n)(h) :=
n∧

ν=1

h, (A.1)

and the Fermi− Fock space :

F(h) :=
∞⊕
n=0

F
(n)(h). (A.2)

For f ∈ h we construct the fermion annihilation operator ah(f), and the fermion
creation operator a∗h(f) by putting :

ah(f) : F(0)(h) �→ {0}, 1 ≤ n, ah(f) : F(n)(h) �→ F(n−1)(h), (A.3)

ah(f) (f1 ∧ ... ∧ fn) =
√
n

n!

∑
σ

ε(σ) < fσ(1), f > fσ(2) ∧ ... ∧ fσ(n), (A.4)

0 ≤ n, a∗h(f) : F
(n)(h) �→ F

(n+1)(h), (A.5)

a∗h(f) (f1 ∧ ... ∧ fn) =
√
n + 1
n!

∑
σ

ε(σ)f ∧ fσ(1) ∧ ... ∧ fσ(n), (A.6)

where the sum is taken over all the permutations σ of {1, 2, ...n} and ε(σ) is one
if σ is even and minus one if σ is odd. We have for f (n) ∈ F(n)(h) :

‖ ah(f)(f (n)) ‖2 + ‖ a∗h(f)(f (n)) ‖2=‖ f ‖2‖ f (n) ‖2, (A.7)

hence ah(f) and a∗h(f) have bounded extensions on F(h). Moreover these operators
satisfy :

‖ ah(f) ‖=‖ a∗h(f) ‖=‖ f ‖, (A.8)

a∗h(f) = (ah(f))∗ , (A.9)

and the canonical anti-commutation relations (CAR’s) :

ah(f)ah(g) + ah(g)ah(f) = 0, (A.10)

a∗h(f)a∗h(g) + a∗h(g)a∗h(f) = 0, (A.11)

a∗h(f)ah(g) + ah(g)a∗h(f) =< f, g > 1. (A.12)
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The CAR Algebra on h is the C
∗-algebra A(h) generated by the identity 1 and

the ah(f), f ∈ h. There exist interesting operators that do not belong to A(h).
For instance, given a closed separable subspace F of h, the number operator NF

defined on ∪∞
n=0F

(n) by

NF :=
∞∑
j=0

a∗h(fj)ah(fj) (A.13)

where (fj)j∈N is an orthonormal basis of F (obviously NF does not depend of the
choice of the basis).

When the classical fields obey the Schrödinger type equation

dψ

dt
= iHψ,

where H is a selfadjoint operator on h, a gauge-invariant quasi-free state ω on
A(h) satisfies the (β, µ)-KMS condition, 0 < β, µ ∈ R, if it is characterized by the
two-point function

ω(a∗h(f)ah(g)) =
〈
zeβH

(
1 + zeβH

)−1
f, g
〉

(A.14)

where z is the activity given by :

z = eβµ. (A.15)

(Note that we have written the Schrödinger/Dirac equation as ∂tψ = iHψ, instead
of the traditional form i∂tψ = Hψ adopted in [9] or [39]. Hence we must change
H into −H to find the conventions of these authors.) This state is a model for
the ideal Fermi gas with temperature 0 < T = β−1 and chemical potential µ. In
statistical mechanics, such a state is called Gibbs grand canonical equilibrium state.

In the case of charged spinor fields, the situation is more intricate since we
have to consider both kinds of fermions, the particles and the antiparticles. We
consider a complex Hilbert space H (the space of the classical charged spin fields),
and an antiunitary operator C on H (the charge conjugation). We assume H is
split into two orthogonal spaces

H = H+ ⊕H−. (A.16)

We define the one particle space

h+ = H+, (A.17)

and the one antiparticle space

h− = CH−. (A.18)

Then the space of n particles and m antiparticles is given by the tensor product
of the previous spaces :

F
(n,m) := F

(n)(h+)⊗ F
(m)(h−), (A.19)
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and to be able to treat arbitrary numbers of particles and antiparticles simultane-
ously, we introduce the Dirac− Fermi− Fock space :

F(H) :=
∞⊕

n,m=0

F
(n,m). (A.20)

If we denote the elements ψ of F by a sequence :

ψ = (ψ(n,m))n,m∈N, ψ(n,m) ∈ F
(n,m),

the vacuum vector is the vector Ωvac defined by :

Ω(0,0)
vac = 1, (n,m) �= (0, 0) ⇒ Ω(n,m)

vac = 0. (A.21)

Now for ϕ+/− ∈ h+/− we define the particle annihilation operator, a(ϕ+), the
particle creation operator, a∗(ϕ+), the antiparticle annihilation operator, b(ϕ−),
the antiparticle creation operator, b∗(ϕ−), by putting for ψ

(n)
+ ⊗ ψ

(m)
− ∈ F(n,m) :

a(ϕ+)
(
ψ

(n)
+ ⊗ ψ

(m)
−

)
=
(
ah+(ϕ+)

(
ψ

(n)
+

))
⊗ ψ

(m)
− ∈ F

n−1,m, (A.22)

a∗(ϕ+)
(
ψ

(n)
+ ⊗ ψ

(m)
−

)
=
(
a∗h+

(ϕ+)
(
ψ

(n)
+

))
⊗ ψ

(m)
− ∈ F

n+1,m, (A.23)

b(ϕ−)
(
ψ

(n)
+ ⊗ ψ

(m)
−

)
= ψ

(n)
+ ⊗

(
bh−(ϕ−)

(
ψ

(m)
−

))
∈ Fn,m−1, (A.24)

b∗(ϕ−)
(
ψ

(n)
+ ⊗ ψ

(m)
−

)
= ψ

(n)
+ ⊗

(
b∗h−(ϕ−)

(
ψ

(m)
−

))
∈ F

n,m+1. (A.25)

All these operators have bounded extensions on F(H) and satisfy the CAR’s. The
main object of the theory is the quantized Dirac field operator Ψ :

f ∈ H �−→ Ψ(f) := a(P+f) + b∗(CP−f) ∈ L(F(H)), (A.26)

where we have denoted by P+/− the orthogonal projector from H onto H+/−. The
mapping f ∈ H �−→ Ψ(f) is antilinear and bounded :

‖ Ψ(f) ‖=‖ f ‖ . (A.27)

Its adjoint denoted by Ψ∗(f) is given by

Ψ∗(f) = a∗(P+f) + b(CP−f), (A.28)

and the CAR’s are satisfied :

Ψ(f)Ψ(g) + Ψ(g)Ψ(f) = 0, (A.29)

Ψ∗(f)Ψ∗(g) + Ψ∗(g)Ψ∗(f) = 0, (A.30)

Ψ∗(f)Ψ(g) + Ψ(g)Ψ∗(f) =< f, g > 1. (A.31)
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The Field Algebra is the C
∗-algebra A(H) generated by 1 and the Ψ(f), f ∈ H. If

we take f only in H+(−) we get a subalgebra isometric to A(h+(−)). The vacuum
state ωvac on A(H) is defined by

A ∈ A(H), ωvac(A) := 〈AΩvac,Ωvac〉 , (A.32)

or by the two point function :

ωvac(Ψ∗(f)Ψ(g)) =< P−f, P−g > . (A.33)

Now we assume the classical fields to satisfy a Dirac type equation

dΨ
dt

= iHΨ (A.34)

where H is selfadjoint on H and leaves H+ and H− invariant. Then

H
+ := H|h+ , H

− := −CH|H−C
−1, (A.35)

are respectively selfadjoint on h+ and h−, and the classical fields of one particle,
ϕ+, and of one antiparticle, ϕ−, are solutions to a Schrödinger type equation on
h+(−) :

dϕ+(−)

dt
= iH+(−)ϕ+(−). (A.36)

A usual splitting of H (with the remark following A.15) is the choice

H+ = 1]−∞,0[(H) H− = 1]0,∞[(H). (A.37)

We say that a state ωβ,µ on A(H) satisfies the (β, µ)-KMS condition, 0 < β,
µ ∈ R, if it is characterized by the two-point function

ωβ,µ(Ψ∗(f)Ψ(g)) =
〈
zeβH

(
1 + zeβH

)−1
f, g
〉
, z = eβµ. (A.38)

The link with the Gibbs equilibrium states for particles and antiparticles is given
explicitly in the following :

Lemma A.1. Given ϕj+(−) ∈ h+(−), we have :

ωβ,µ(a∗(ϕ1
+)a(ϕ2

+)) =
〈
zeβH

+
(
1 + zeβH

+
)−1

ϕ1
+, ϕ

2
+

〉
, (A.39)

ωβ,µ(b∗(ϕ1
−)b(ϕ2

−)) =
〈
z−1eβH

−
(
1 + z−1eβH

−
)−1

ϕ1
−, ϕ

2
−

〉
. (A.40)
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Therefore the restrictions of ωβ,µ to A(h+) and to A(h−), describe a double
Gibbs equilibrium state : on the one hand, an ideal Fermi particle gas with temper-
ature 0 < T = β−1 and chemical potential µ, and on the other hand an ideal Fermi
antiparticle gas with the same temperature T but an opposite chemical potential
−µ.
Proof of Lemma A.1. Taking f = ϕ1

+, g = ϕ2
+ in (A.38), we obtain (A.39). Choos-

ing f = C−1ϕ2
−, g = C−1ϕ1

−, we get :

ωβ,µ(b(ϕ2
−)b∗(ϕ1

−))

=
〈
zeβH

(
1 + zeβH

)−1
C−1ϕ2

−, C
−1ϕ1

−

〉
=
〈
ϕ1
−, zCeβH

(
1 + zeβH

)−1
C−1ϕ2

−

〉
=
〈
ϕ1
−,
(
1 + z−1eβH

−
)−1

ϕ2
−

〉
.

Then we deduce (A.40) using the normality of the state, ωβ,µ(1) = 1, and the
CAR :

b∗(ϕ2
−)b(ϕ1

−) + b(ϕ1
−)b∗(ϕ2

−) =< ϕ2
−, ϕ

1
− > 1.

�
We apply these procedures to define the Boulware state in the past, and the

thermal state at the horizon. First the quantization at time t = 0 is defined by
choosing

H = L2
0, H = H0, (A.41)

CΦ = t(Φ4,Φ3,−Φ2,−Φ1). (A.42)

If we stress the charge of the spin field q by denoting the Hamiltonian (III.17)
by H0 = H0(q), we remark that H

− = H0(−q), and CΦ satisfies the boundary
condition (III.14) for Φ ∈ D(H0). Hence C is actually a charge conjugation. As
regards the definition of particles and antiparticles, appears a slight ambiguity
due to the fact that 0 is a possible eigenvalue of H0, unlike the case of the whole
Reissner-Nordstrøm manifold for which H∞ has no eigenvalue (Lemma III.1). We
leave open the problem of the point spectrum of H0 and we choose :

(P+, P−) =
(
1]−∞,0](H0),1]0,∞[(H0)

)
or
(
1]−∞,0[(H0),1[0,∞[(H0)

)
, (A.43)

and we denote Ψ0 the quantum field at time t = 0 constructed in the previous
way. We define the Boulware quantum state ω0 on the field algebra A(L2

0) as the
vacuum state :

Φj
0 ∈ L2

0, ω0
(
Ψ∗

0(Φ1
0)Ψ0(Φ2

0)
)

=
〈
P−Φ1

0, P−Φ2
0
〉
. (A.44)
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To quantize at the black-hole horizon, we choose

HBH := L2
∞, H = HBH , (A.45)

P+ = 1]−∞,0[(HBH), P− = 1]0,∞[(HBH), (A.46)

C is given by (A.42) again, and ΨBH(Φ) denotes the quantum field defined by
(A.28). We can easily express these operators using the partial Fourier transform
with respect to x, f̂(ξ, ω) of f(x, ω) ∈ L2(Rx × S2

ω, dxdω) :

P+HBH =
{

Φ ∈ L2
∞; ξ ≥ qA(r0) ⇒ Φ̂1(ξ, ω) = Φ̂4(ξ, ω) = 0,

ξ ≤ −qA(r0) ⇒ Φ̂2(ξ, ω) = Φ̂3(ξ, ω) = 0
}
, (A.47)

P−HBH =
{

Φ ∈ L2
∞; ξ ≤ qA(r0) ⇒ Φ̂1(ξ, ω) = Φ̂4(ξ, ω) = 0,

ξ ≥ −qA(r0) ⇒ Φ̂2(ξ, ω) = Φ̂3(ξ, ω) = 0
}
. (A.48)

In fact it will be useful to split the fields into a part outgoing to infinity, and a
part falling into the black-hole, as t→ +∞, by putting :

H
out :=

{
Φ ∈ L2

∞; Φ1 = Φ4 = 0
}
, (A.49)

Hin :=
{

Φ ∈ L2
∞; Φ2 = Φ3 = 0

}
. (A.50)

We denote P out and P in the orthogonal projectors from HBH onto Hout and Hin.
We are mainly concerned with the outgoing (anti)particles. Let ωout be a state on
A(Hout). Given a Lebesgue measurable subset Λ of R×S2, of measure | Λ |∈]0,∞[,
we introduce

H
out
Λ :=

{
Φ ∈ H

out; (x, ω) /∈ Λ ⇒ Φ(x, ω) = 0
}
. (A.51)

We choose an orthonormal basis (Φj)j∈N of Hout
Λ , we define the following numbers :

N+
Λ (ωout) :=| Λ |−1

∑
j

ωout(a∗(P+Φj)a(P+Φj)), (A.52)

N−
Λ (ωout) :=| Λ |−1

∑
j

ωout(b∗(CP−Φj)b(CP−Φj)), (A.53)

and if these numbers are finite

9Λ(ωout) := q
(
N+

Λ (ωout)−N+
Λ (ωout)

)
. (A.54)
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We could understand these quantities as, respectively, the density of particles,
the density of antiparticles, the charge density (in Λ). But this interpretation
is somewhat misleading since according to the Paley-Wiener theorem P+Hout

Λ ∩
Hout

Λ = P−Hout
Λ ∩ Hout

Λ = {0}, hence no particle and no antiparticle is localized in
Λ. Nevertheless, in the case of the Gibbs states, these quantities do not depend on
Λ, hence these concepts are meaningful:

Lemma A.2. N±
Λ (ωout) is independent of the choice of the basis (Φj)j∈N. Moreover,

given a (β, µ)−KMS state ωoutβ,µ on A(Hout), we have

N+
Λ (ωoutβ,µ) =

1
πβ

ln
(
1 + eβµ

)
, N−

Λ (ωoutβ,µ) =
1
πβ

ln
(
1 + e−βµ

)
, 9Λ(ωoutβ,µ) =

1
π
qµ.

(A.55)

Proof of Lemma A.2. If (Ψn)n∈N is another orthonormal basis of Hout
Λ we have :

N+
Λ (ωout) =| Λ |−1

∑
n,m


∑

j

< Φj ,Ψn > < Φj ,Ψm >


ωout(a∗(P+Ψn)a(P+Ψm))

=| Λ |−1
∑
n

ωout(a∗(P+Ψn)a(P+Ψn)).

By using the Fourier transform and (A.39), (A.47) and (A.49), we calculate

N+
Λ (ωoutβ,µ) = (A.56)

1
2π | Λ |

∫ ∞

−qA(r0)

eβ(µ−qA(r0))e−βξ(
1 + eβ(µ−qA(r0))e−βξ

)∑
j

(
| Φ̂j

2(ξ) |2 + | Φ̂j
3(ξ) |2

)
dξ.

Now given fh ∈ L2(Λ) we have :

‖ f2 ‖2 + ‖ f3 ‖2=
∑
j

|< f2,Φ
j
2 > + < f3,Φ

j
3 >|2,

hence by choosing fk(x) = e−ixξ1Λ(x), fl = 0 we deduce that :

∑
j

(
| Φ̂j

2(ξ) |2 + | Φ̂j
3(ξ) |2

)
= 2 | Λ |

and we easily get the value of N+
Λ (ωoutβ,µ). Finally we obtain N−

Λ (ωoutβ,µ) thanks to
Lemma A.1 by changing µ into −µ. �
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